

Bilkent University

Department of Computer Engineering

Senior Design Project II – CS 492
T2416
Edux

Final Report
Bilginer Oral 22103163 bilginer.oral@ug.bilkent.edu.tr

Cahit Ediz Civan 22003206 ediz.civan@ug.bilkent.edu.tr
Efe Kaan Fidancı 22102589 kaan.fidanci@ug.bilkent.edu.tr

Görkem Kadir Solun 22003214 kadir.solun@ug.bilkent.edu.tr
Murat Çağrı Kara 22102505 cagri.kara@ug.bilkent.edu.tr

Supervisor: Doruk Öner

Course Instructors: Atakan Erdem, Mert Bıçakçı

May 2nd, 2025

mailto:bilginer.oral@ug.bilkent.edu.tr
mailto:ediz.civan@ug.bilkent.edu.tr
mailto:kaan.fidanci@ug.bilkent.edu.tr
mailto:kadir.solun@ug.bilkent.edu.tr
mailto:cagri.kara@ug.bilkent.edu.tr

1. Introduction__4
2. Requirements Details__ 5

2.1. Functional Requirements__ 5
2.1.1. User Management and Authentication___________________________________ 5
2.1.2. Resource Upload and Processing_______________________________________ 5
2.1.3. Interactive Learning Tools__ 6
2.1.4. Personalised Study Schedules__6
2.1.5. Learning Assistance with LLMs__7
2.1.6. Data Security and Privacy___7
2.1.7. Scalability and Performance___ 7

2.2. Non-Functional Requirements__8
2.2.1. Usability__ 8
2.2.2. Reliability___ 8
2.2.3. Performance___ 8
2.2.4. Supportability__ 8
2.2.5. Scalability___ 9

3. Final Architecture and Design Details__ 9
3.1. Architectural Overview___ 9
3.2. Layered Structure___10
3.3. Subsystem Decomposition and Services_____________________________________ 11
3.4. Data Management and Security__ 11

4. Development/Implementation Details__ 11
4.1. Frontend__ 11
4.2. Backend__ 14
4.3. Deployment___ 16

5. Test Cases___16
5.1. Functionality Test Cases___ 16

5.1.1. Integration Test Cases___ 32
5.2. Non-Functional Test Cases___ 37

5.2.1. Performance__ 37
5.2.2. Security Test Cases___ 40
5.2.3. Usability Test Cases__ 45
5.2.4. Document Test Cases___ 49

6. Maintenance Plan and Details__ 51
7. Other Project Elements___ 52

7.1. Consideration of Various Factors in Engineering Design________________________ 52
7.1.1. Constraints___ 52
7.1.2. Standards___52

7.2. Ethics and Professional Responsibilities_____________________________________ 53
7.2.1. Ethical Considerations__ 53
Public Health and Safety__53
Welfare and Security___53
Global and Cultural Impact__53
Social, Environmental, and Economic Responsibility___________________________ 53
7.2.2. Professional Responsibilities___ 54
Engineering Best Practices and Compliance__________________________________ 54
Collaborative Teamwork and Ethical Leadership_______________________________54

7.3. Teamwork Details__ 54
7.3.1. Contributing and functioning effectively on the team to establish goals, plan tasks,
and meet objectives__54
7.3.2. Helping creating a collaborative and inclusive environment_________________ 58
7.3.3. Taking lead role and sharing leadership on the team_______________________ 59
7.3.4. Meeting objectives___ 59

7.4. New Knowledge Acquired and Applied_____________________________________ 60
8. Conclusion and Future Work__ 61
9. Glossary__ 62
User Manual__ 65
Installation Guide__ 86
10. References___ 86

1. Introduction

In today's fast-paced world, learning and staying ahead require more than just access to
resources. It demands efficiency, adaptability, and focus. While the internet and digital platforms
have made educational content more accessible than ever, they've also created an ocean of
information that often overwhelms learners. Juggling multiple resources, managing time, and
ensuring progress can be intimidating, but many find it hard to keep their knowledge and reach
their goals.

This is where Edux steps in as a game-changer. Edux changes the learning process by
utilising the power of large language models (LLMs) and personalised tools to make learning
more effective and interactive. With features like detailed explanations powered by LLMs,
personalised study schedules, and interactive learning tools, Edux transforms scattered study
efforts into structured, goal-oriented journeys [1]. By tailoring study schedules to support aids
for near deadlines and generating interactive tools such as flashcards, quizzes, and skill trees
from user-uploaded content, Edux simplifies complex learning processes while boosting
understanding and retention. With plans for future expansion into mobile and tablets, Edux is
poised to meet the evolving demands of modern education, though these developments fall
outside the current scope of the senior design project.

This final report presents the complete architecture, development, and evaluation of
Edux, marking the culmination of the senior design project. After the introduction, the final
report describes detailed and updated system requirements. The final system design is
documented through architectural diagrams and component breakdowns, while the development
section outlines implementation processes, tools used, and challenges addressed. Testing
procedures and results validate the system's functionality and reliability. A maintenance plan is
also provided to ensure continued usability and support.

Key engineering considerations such as constraints, standards, risks, and alternatives are
discussed, along with reflections on ethical and professional responsibilities observed throughout
the project. Teamwork details highlight individual contributions, collaboration strategies,
leadership roles, and progress against initial objectives. The report also outlines the new
knowledge acquired and applied during the project, supported by the learning methods used. The
software system is delivered alongside a user manual with installation instructions and usage
guidance. Final code, executables, and documentation are accessible via the project repository
and website.

This document serves as a comprehensive summary of the Edux project, capturing its full
technical and collaborative journey.

2. Requirements Details

2.1. Functional Requirements

The functional requirements define the core features and capabilities of the Edux
platform, focusing on user interaction, educational content management, intelligent learning
assistance, and secure, personalised experiences. These requirements are categorised by system
modules and user objectives.

2.1.1. User Management and Authentication

Objective: To facilitate secure and role-specific access to the Edux platform.

FR-1.1: The system shall support a primary user role:

- Learner.

FR-1.2: Users shall be uniquely identified and stored with a User ID in the system database.

FR-1.3: The system shall provide secure registration and login mechanisms via:

- Email and password.

- Third-party authentication (e.g., Google OAuth).

FR-1.4: Users shall be able to:

- Update their profile information.

- Reset their password.

- Configure personal preferences.

FR-1.5: Authentication and authorisation processes shall be modularised into microservices.

FR-1.6: Inter-service communication shall implement RBAC (Role-Based Access Control)
using unique authentication tokens.

2.1.2. Resource Upload and Processing

Objective: To enable users to upload and interact with diverse educational resources.

FR-2.1: The system shall support uploads in the following formats:

- PDF, images, PowerPoint presentations, and text documents.

FR-2.2: The system shall parse uploaded documents and extract textual data for analysis.

FR-2.3: Users shall receive explanations:

- Page-by-page.

- Across the entire document.

2.1.3. Interactive Learning Tools

Objective: To assist learners in content retention through interactive mechanisms.

FR-3.1: The system shall generate flashcards highlighting key concepts from uploads and
chat history when users click generate flashcard with their unique ID.

FR-3.2: A quiz module shall support:

- Multiple-choice questions based on uploaded content, highlighting the percentage of
correct answers after completion.

FR-3.3: The platform shall support:

- Auto-generated skill trees from uploaded user material and chat history.

- Quizzes are embedded within skill trees to assess comprehension.

2.1.4. Personalised Study Schedules

Objective: To optimise the learner's time and productivity.

FR-4.1: Users shall be able to:

- Upload/Update course syllabi.

- Manually input syllabi.

FR-4.2: The platform shall generate a card-based study plan for each week linked to the
user’s unique ID.

FR-4.3: Notifications shall be triggered based on:

- Proximity to assignment deadlines.

2.1.5. Learning Assistance with LLMs

Objective: To deliver context-aware content explanation and natural language support
[2].

FR-5.1: The system shall use large language models to:

- Explain uploaded content with contextual accuracy

- Respond to natural language queries from users

FR-5.2: Responses shall align with the educational content and user history for
personalised learning.

2.1.6. Data Security and Privacy

Objective: To uphold user privacy and system integrity.

FR-6.1: All user data (including uploads and personal details) shall be encrypted at rest
and in transit.

FR-6.2: Access to sensitive data shall be controlled through:

- Role-based access controls

- User-specific permissions

FR-6.3: The system shall reject material access requests that do not match the user’s
unique ID.

FR-6.4: The system must comply with international privacy regulations, including the
GDPR

2.1.7. Scalability and Performance

Objective: To ensure reliability and responsiveness under varying loads.

FR-7.1: The platform shall scale horizontally to accommodate user and data growth.

FR-7.2: It shall maintain high availability and responsiveness during peak usage (e.g.,
exam seasons).

FR-7.3: The system shall implement:

- Content caching

- Optimised database queries

- Load-balanced microservice orchestration
2.2. Non-Functional Requirements
2.2.1. Usability

Edux is designed for learners requiring a user-friendly interface that is intuitive,
accessible, and easy to navigate. The platform must cater to the diverse needs and preferences of
its users. Key usability features should include clearly labelled buttons accompanied by text or
universally recognised icons to ensure clarity. The user interface (UI) should be compact and
responsive, allowing students to efficiently access tools and resources, especially during busy
study periods. The system shall ensure that 95% of users can complete common tasks, such as
uploading content or generating flashcards, within three clicks or fewer [3].

2.2.2. Reliability

Ensuring no loss of data integrity in case of system failures is crucial, as these losses can
be real-time data entries that have not been committed to the database and could be at risk during
system failures. The system should maintain a data consistency rate of at least 99.9%, ensuring
that data remains consistent and accurate even during system failures. Scheduled maintenance
should be conducted during periods of minimal user activity to minimise disruption. Ensuring
that user data is protected during interactions with API gateways and safeguarded against
cyberattacks is crucial. The system should achieve an uptime of at least 99.9% annually, which
translates to no more than 8.76 hours of downtime per year.

2.2.3. Performance

Database queries, such as loading individual study materials in the chat screen and
generating skill trees, flashcards, and quizzes, as well as reloading skill trees, should return
results within milliseconds to a few seconds, depending on the complexity and size of the data, to
ensure an optimal user experience. For instance, a query handling a few hundred records should
ideally be completed in under one second, while more complex queries involving millions of
records might take a few seconds. This order of magnitude ensures that users experience minimal
delay, maintaining a responsive and efficient system. Moreover, Edux will utilise visual
indicators to notify users during longer loading times and manage expectations. The average
response time should not exceed two seconds under normal conditions and should not exceed 3
seconds during peak loads.

2.2.4. Supportability

The application must be accessible and function seamlessly across various devices and
operating systems, including desktops, mobile phones, and tablets, with integration in the future

scope of the project. The application should be compatible with at least 95% of the most
commonly used devices [4]. Support processes must align with industry standards and regulatory
requirements, ensuring data security and user trust [5].

2.2.5. Scalability

Edux should seamlessly scale to accommodate increasing user traffic and a growing
database of study materials. The system should be designed to handle higher loads without
compromising performance or usability. An example metric to track Edux's ability to handle
higher loads without compromising performance or usability is system throughput, measured in
transactions per second (TPS). This metric captures the volume of transactions the system can
process within a given timeframe, reflecting performance and scalability under varying loads.
This approach can provide early detection of issues and proactive scaling. Moreover, the system
shall handle at least 1000 simultaneous users without performance degradation.

3. Final Architecture and Design Details
3.1. Architectural Overview

Edux adopts a modular, multi‐layered architecture designed to support scalability,
maintainability, and seamless integration of advanced AI capabilities. At its core, the system is
divided into three primary layers Client, Backend, and Data each encapsulating distinct
responsibilities and interacting through a centralized API Gateway. This layered approach allows
the platform to cleanly separate concerns: the Client Layer focuses on user interaction, the
Backend Layer, that has a microservices architecture, provides business logic and AI services,
and the Data Layer ensures reliable storage and retrieval of information. By compartmentalizing
functionality and leveraging service boundaries, Edux achieves a high degree of flexibility,
making it straightforward to introduce new features or scale existing ones without disrupting the
overall system.

Figure 1: Edux Component Diagram

3.2. Layered Structure

The Client Layer presents a responsive web interface built with modern frontend
technologies, allowing learners, paid subscribers access the platform’s features. All interactions
originate here, routed through the API Gateway to ensure secure and authenticated
communication. Beneath this, the Backend Layer orchestrates a suite of microservices that
collectively implement the system’s functionality. These services include Authentication for user
access control, User Management, Course Management, Chat and GenAI Services for interactive
study tools, Skill Tree service that generates and stores skill trees and user progression and the
File Manager for handling uploads. Each service exposes a well‐defined API, with public
endpoints secured via JSON Web Tokens and private inter‐service channels protected by API
keys. At the foundation, the Data Layer comprises multiple databases such as User DB, Course
DB, Chat DB, Skill Tree DB, and specialized storage in Azure Blob for persisting structured
records and unstructured files. This stratification promotes clear interfaces and fault isolation,
ensuring that issues in one layer, such as heavy AI processing in the GenAI Service, do not
cascade across the entire platform.

https://drive.google.com/file/d/1V61ToEobKafKTQ-ATjsFXsKnYauINgMz/view?usp=sharing

3.3. Subsystem Decomposition and Services

Within the Backend Layer, Edux is decomposed into focused microservices, each
responsible for a specific domain. The Authentication Service issues and validates JWTs,
handling secure login flows and enforcing role‐based access. The User Service manages profile
creation, updates, and retrieval, while the Course Service oversees syllabus uploads, weekly
study plan generation, and course metadata. Chat Service enables real‐time AI‐driven
discussions and slide‐based learning, leveraging the GenAI Service’s integration with external
LLM APIs like Gemini or OpenAI. The File Manager Service abstracts storage concerns,
offering endpoints to store and retrieve user uploads ranging from lecture slides to generated
flashcards and quizzes. Notification and User Analytics services round out the ecosystem,
delivering timely alerts and insight dashboards. This decomposition enables independent
development, deployment, and scaling of each service, reducing interdependencies and
accelerating feature rollout.

3.4. Data Management and Security

Edux’s Data Layer employs MySQL databases for structured data within containerized
microservices managed by Docker, ensuring high availability and transaction integrity [6].
Unstructured assets such as PDFs, images, quizzes, and flashcards are persisted to cloud object
storage (Azure Blob) [7], with the File Manager Service maintaining reference IDs for efficient
access. To safeguard sensitive educational content and personal information, Edux enforces strict
role‐based access controls validated by the Authentication Service. Inter‐service communication
is further secured via mutual API key handshakes, preventing unauthorized requests within the
internal network. Compliance with regulations such as GDPR [8] and regional data protection
laws is baked into the architecture, ensuring that user materials and metrics remain private and
are never served to unintended recipients. With automated backups, failover strategies, and
continuous security monitoring, the design prioritizes data integrity and user trust, laying a
robust foundation for future growth and feature expansion.

4. Development/Implementation Details
4.1. Frontend

The Edux frontend is developed with Next.js (App Router) and TypeScript, using a
modular architecture optimized for scalability and developer efficiency. All UI components are
built using the shadcn/ui component library, layered on top of Radix UI primitives and styled

with Tailwind CSS, providing a cohesive, accessible, and flexible design system [9, 10, 11, 12,
13].

At the highest level, all routes reside under the app/ directory. The root layout.tsx
wraps every page in essential global providers, and the ClientLayout component manages
client-specific behaviors. This includes injecting a shared Navbar, which is excluded on
authentication-related pages like /sign-in, /sign-up, and /forgot-password to
provide a distraction-free user experience. ClientLayout also handles global theming with a
ThemeProvider, disabling transitions during theme changes to avoid flickering. Additionally,
a global Toaster component (via Sonner) is mounted here to deliver notifications, and a
useExitTracker hook monitors exit events.

Global styles are defined in globals.css, with Tailwind CSS and PostCSS driving a
utility-first styling system. Configuration via tailwind.config.ts ensures theme
consistency and responsive behaviour.

The routing structure reflects the platform’s feature set. Public routes (sign-in, sign-up,
password reset, etc.) are isolated within their own directories. Once authenticated, users are
directed to a centralised dashboard (user-dashboard.tsx), which links to key learning
features—Courses, Flashcards, Quizzes, Skill Trees, and Chat. Each feature is accessible through
nested routes under the course, such as app/course/[course_id]/flashcards or
app/course/[course_id]/quizzes, enabling structured navigation.

The components/ folder houses reusable elements, including navbar.tsx,
sidebar.tsx, mode-toggle.tsx, dialogues like confirmation-dialog.tsx, and
general UI primitives (buttons, separators, scroll areas, etc.) built using shadcn/ui.
Notifications and toasts are wrapped in toast.tsx, abstracting the Sonner library. Moreover,
components/ folder also houses the reusable elements for each service component, such as
Courses, Flashcards, Quizzes, Skill Trees, Search, Notifications and Chat, where inside
create-edit dialogues, microservice-specific components are placed.

Data communication between the frontend and backend is handled via service-layer
abstractions. Each service—such as the user, chat, file, or analytics service—exposes its own
API. The frontend interacts with these services using dedicated modules (e.g., userService,
chatService, etc.). These services issue authenticated HTTP requests using bearer tokens.
During creation screens, if there is multiple data to be inserted using formdata we use
multipart/form-data and pass the formdata to the request.

An example for how communication occurs from backend to frontend:

const coursesResponse = await userService.get("/user", {
 headers: {
 "Content-Type": "application/json",
 Authorization: `Bearer ${token}`,
 },
});
setCourses(coursesResponse.data?.courses || []);

Each of these services communicates with a corresponding backend microservice, and the
route resolution on the backend is managed through a shared public.py entry point. This file
defines route handlers for actions such as retrieving user data, history messages, file assets, and
other context-specific content requested by the frontend. Whether the service relates to user
progress, chat history, flashcard content, or skill tree metadata, public.py acts as the
centralised gateway that maps incoming requests to the appropriate handler logic.

Advanced UI interactions are central to Edux’s learning experience. Flashcards feature
animated card-flip mechanics; quizzes offer multi-choice interaction with feedback and scoring
logic; and skill trees use React Flow to visualise a graph-based learning path. Skill nodes are
locked until their related quizzes are passed (with an 80% threshold). Skill dialogues manage
quiz initiation and post-quiz progression [14].

Charts and analytics throughout the app are rendered with Recharts, while React
Markdown (augmented with rehype-katex and remark-math) enables support for
formatted text and LaTeX-style mathematical notation, used frequently in AI-generated
explanations. Subtle UI transitions are powered by React Spring, enhancing visual flow without
overwhelming users [15].

To maintain high code quality, the codebase is linted with ESLint and formatted with
Prettier, including the eslint-plugin-tailwindcss for class ordering. These tools are
enforced as pre-deployment checks. Jest and React Testing Library (configured via
jest.config.js and setupTests.ts) ensure component correctness through unit tests.
All configurations—including next.config.mjs, postcss.config.mjs, and
tailwind.config.ts—are standardised across the team via version control

Overall, the Edux frontend emphasizes performance, extensibility, and developer clarity.
The use of shadcn/ui, modular routing via the App Router, and service-driven backend
communication (via public.py) allows the platform to support new features—such as
AI-enhanced tools, real-time collaboration, or expanded analytics—without compromising user
experience or code structure.

4.2. Backend

The backend of the Edux platform is organized as a suite of independently deployable
microservices, each responsible for a distinct domain of functionality. The codebase is laid out
under a single repository containing separate directories for seven core services Authentication,
User, Course, Chat, Skill Tree, GenAI, and FileManager alongside a Docker Compose manifest
and shared scripts. Each service follows a consistent structure: a main.py that instantiates a
FastAPI application; subpackages for routing (api), data models and persistence (database or
models), security checks, utility functions, and inter‐service clients. This division enforces a
clear separation of concerns and makes it straightforward to develop, test, and scale each service
in isolation [6, 16, 17].

Containerization and local orchestration are handled via Docker and Docker Compose.
The root docker-compose.yml defines a shared bridge network and dedicates named volumes to
each service’s database storage (for example, db_user, db_chat, etc.). Each microservice
directory includes a Dockerfile that installs its Python dependencies, copies the application code,
and specifies environment variables via an .env file. In development, docker-compose up will
bring up all seven containers simultaneously, wiring them together so that the Authentication
Service issues tokens consumed by the User and Course Services, while the FileManager and
GenAI services provide specialized functionality to the Course and Chat Services over HTTP [6,
16].

The Authentication Service is the linchpin for security. It exposes a public /login
endpoint implementing OAuth2 password flow to verify credentials (email and password)
against a user datastore and issues JWTs with expiration. A private router, protected by an
API‐key check, offers token validation endpoints so that downstream services can verify both
service‐to‐service credentials and user tokens. Passwords are hashed using industry‐standard
libraries, and tokens are signed with a shared secret. This service encapsulates all logic for
identity verification and access token lifecycle management [18].

The User Service manages user records, profiles, and preferences. Through its public
API, clients can create accounts, retrieve profile details, and list associated resources. Internally,
it uses SQLAlchemy to map User entities to a MySQL database. Protected routes guarded by the
same JWT bearer scheme allow administrators or the Authentication Service to update or delete
user records. This service also provides client code used by other services (e.g., the Course
Service) to fetch user information without duplicating authentication logic [19].

The Course Service orchestrates course definitions, syllabi, and study plan generation.
Users can create or update courses by supplying metadata and uploading files (such as syllabi or
icons). When a syllabus is uploaded or modified, the service invokes the GenAI Service via its
client library to produce a weekly study plan, persists that plan through the FileManager

Service, and stores references in its own database. Course entities, including linked files and
generated content, are exposed through public routes (requiring JWTs) and internally updated via
private routes secured by API keys.

The Chat Service underpins interactive learning conversations. It maintains chat sessions
scoped to individual courses, allowing learners to send text messages or upload documents
(PDFs, slide decks). Uploaded content is processed, indexed, and stored via the FileManager
Service, then incorporated into prompts sent to the GenAI Service for contextual explanations.
Learners can also trigger generation of quizzes and flashcards directly from chat history. All chat
data is persisted in a dedicated database, and endpoints are protected with both JWT and
API‐key verification to secure user access and interservice calls.

The Skill Tree Service orchestrates the creation and management of directed‐acyclic
“skill graphs” where each node represents a quiz and edges encode prerequisite relationships.
When learners interact with the chat and upload new files, the service calls the GenAI Service to
synthesize a tree of quizzes tailored to the student’s history and the course’s learning objectives.
It then persists the resulting node and edge models in its own MySQL database via
SQLAlchemy, using adjacency‐list tables to represent parent/child relationships. Quiz content
and any generated assets are stored and retrieved through the FileManager Service, with each
node’s quiz id referencing that storage. Public endpoints—guarded by JWTs—allow clients to
fetch a user’s current skill tree, report node completions, and query which quizzes are now
unlocked. Private routes, secured by service API keys, enable other backend components to
update progress and regenerate subtrees when content changes. This separation of structure (tree
topology) from state (user progress) ensures both referential integrity and efficient in‐memory
traversal for unlocking new quizzes.

The GenAI Service encapsulates all integration with external large language models. It
provides a private API offering multiple AI‐powered operations, weekly study plan generation,
flashcard creation, quiz synthesis by routing requests to different providers (Google Gemini, for
example) through a unified client abstraction. Incoming requests include chat histories or
document content; responses are validated against expected JSON schemas before being
returned. Access to these endpoints requires a valid service API key, ensuring only authorized
backend components can leverage potentially costly AI calls.

Finally, the FileManager Service handles all user‐uploaded assets and generated
files. It exposes public endpoints to upload, download, and delete files. Metadata about each file
(original filename, storage path, owner) is recorded in a MySQL database, while the files
themselves reside on Azure Blob Storage. Private routes allow other microservices to manage
files programmatically, with access gated by API‐key checks.

Cross‐cutting concerns are uniformly addressed across services. CORS middleware is
enabled by default (with plans to lock it down in production), environment variables configure

database connections and secrets, and Pydantic schemas enforce request/response structure
consistency. By combining FastAPI’s async performance, Docker‐based isolation, and clear
API‐key plus JWT‐based security, this microservices backend delivers a scalable, maintainable
foundation that aligns with the detailed design requirements of Edux [20].

4.3. Deployment
We leverage Docker to provide a consistent, isolated development environment across all

platforms. By packaging each application component's frontend, backend, and any auxiliary
services along with its dependencies into its own container, we eliminate it works on my machine
issues and ensure every developer operates in an identical runtime. This containerized approach
not only boosts reproducibility but also makes our workflows portable, allowing team members
to start coding without wrestling with local setup discrepancies [6, 16].

To reflect the distinct needs of our tech stack, we maintain separate Dockerfiles for
FastAPI, React, and any other services. Each Dockerfile precisely outlines the environment,
libraries, and build steps required for its component, enabling independent builds and focused
updates. We then orchestrate these containers with a single docker-compose configuration, which
binds them together into a unified, multi-service environment [6, 13, 16, 17].

This architecture greatly simplifies service management: spinning up the entire system
becomes as easy as running one command, and scaling individual components for example,
adding more API workers or front-end instances can be handled seamlessly [16]. By
encapsulating each service and coordinating them with Docker Compose, we achieve a
streamlined deployment process that adapts effortlessly to development, staging, and production
environments.

5. Test Cases

The procedures are written for test software engineers.

5.1. Functionality Test Cases

Test ID TCF0 Category Functional Severity Medium

Objective Logout

Steps ● Login to Edux with any account.
● After logging in, log out using the navigation bar on the right.
● Click the “Logout” button.

Expected The user will log out and be directed to the login page.

Tester Murat Çağrı Kara

Date/Result 13.08.2024 / Success.

Test ID TCF1 Category Functional Severity Low

Objective Show Terms of Service and Privacy Policy

Steps ● Open Edux on the browser.
● Navigate to the “Sign in” page.
● At the bottom, click “Terms of Service” and “Privacy Policy,” and

click one of them.

Expected Terms of Service or Privacy Policy are shown.

Tester Murat Çağrı Kara

Date/Result 13.08.2024 / Success.

Test ID TCF2 Category Functional Severity Low

Objective Show About Page

Steps ● Login to Edux on the browser.
● Navigate to the “About” page from the navigation bar.
● Click “Team” or “Github Page.”

Expected Team or Github Page are shown.

Tester Murat Çağrı Kara

Date/Result 17.08.2024 / Success.

Test ID TCF3 Category Functional Severity Medium

Objective Show Subscription Service

Steps ● Login to Edux on the browser.
● Navigate to the “Services” dropdown from the navigation bar.
● Select the “Subscription Service.”

Expected Subscriptions page will be shown.

Tester Murat Çağrı Kara

Date/Result 15.02.2025 / Success.

Test ID TCF4 Category Functional Severity Medium

Objective Show Notifications

Steps ● Login to Edux on the browser.
● Navigate to the “Services” dropdown from the navigation bar.
● Select the “Notifications.”

Expected Notifications page will be shown.

Tester Görkem Kadir Solun

Date/Result 22.04.2025 / Success.

Test ID TCF5 Category Functional Severity Medium

Objective Search in Edux

Steps ● Login to Edux on the browser.
● Navigate to the “Search in Edux…” dropdown from the navigation bar.
● Write the feature that you want to access.
● Select the feature shown below.

Expected The selected feature will be opened.

Tester Murat Çağrı Kara

Date/Result 24.08.2024 / Success.

Test ID TCF6 Category Functional Severity Medium

Objective Switch between dark and light mode

Steps ● Open Edux on the browser.
● Navigate to the moon icon on the right of the navigation bar.
● Click the moon icon.
● Select the theme you want: dark, light, or system.

Expected The user interface will follow the wanted theme.

Tester Murat Çağrı Kara

Date/Result 27.08.2024 / Success.

Test ID TCF7 Category Functional Severity Critical

Objective Open Skill Tree

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.

Expected The Skill Tree page will be shown.

Tester Görkem Kadir Solun

Date/Result 25.10.2024 / Success.

Test ID TCF8 Category Functional Severity Critical

Objective Creating a Skill Tree

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the Create icon on the top of the sidebar.
● Fill in the required fields in the creation modal.

Expected A new Skill Tree will be created.

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Success.

Test ID TCF9 Category Functional Severity Critical

Objective Creating a Skill Tree: Unsuccessful Creation

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the Create icon on the top of the sidebar.
● Fill in the required fields in the creation modal.
● Skill Tree creation failed.

Expected
Skill Tree creation fails with an error message: “Unable to create Skill Tree,

please try again later.” Error logs indicate server-side validation failure. Issue
requires immediate backend service review.

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Fail.

Test ID TCF10 Category Functional Severity Critical

Objective Editing a Skill Tree

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the edit icon on the Skill Tree that you want to edit.
● Change the fields in the edit modal.

Expected The selected Skill Tree will be edited.

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Success.

Test ID TCF11 Category Functional Severity Critical

Objective Editing a Skill Tree: Unsuccessful Edit

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the edit icon on the Skill Tree that you want to edit.
● Change the fields in the edit modal.

Expected The selected Skill Tree could not be edited; an error occurred stating “Unable
to save changes, please retry.”

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Fail.

Test ID TCF12 Category Functional Severity Critical

Objective Deleting a Skill Tree

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the delete icon on the Skill Tree that you want to delete.
● Click confirm on the deletion modal.

Expected The selected Skill Tree will be deleted.

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Success.

Test ID TCF13 Category Functional Severity Critical

Objective Viewing a Skill Tree

Steps ● Login to Edux on the browser.
● Click the “Skill Tree” card in the main menu.
● Open the sidebar on the Skill Tree page.
● Click the view icon on the Skill Tree that you want to view.

Expected The selected Skill Tree will be shown, and the graph will be rendered.

Tester Görkem Kadir Solun

Date/Result 17.02.2025 / Success.

Test ID TCF14 Category Functional Severity Critical

Objective Creating an Individual Study

Steps ● Login to Edux on the browser.
● Click the Create icon on the right of the “Your Studies” in the main

menu.
● Fill in the required sections on the modal.
● Click the Save button.

Expected A new Individual Study will be created.

Tester Görkem Kadir Solun

Date/Result 14.09.2024 / Success.

Test ID TCF15 Category Functional Severity Critical

Objective Creating an Individual Study: Creation Fail

Steps ● Login to Edux on the browser.
● Click the Create icon on the right of the “Your Studies” in the main

menu.
● Fill in the required sections on the modal.
● Click the Save button.

Expected
Error message displayed: “Unable to create Individual Study due to

incomplete fields.” despite all required fields being filled. Validation or
backend issue suspected.

Tester Görkem Kadir Solun

Date/Result 14.09.2024 / Fail.

Test ID TCF16 Category Functional Severity Critical

Objective Editing an Individual Study

Steps ● Login to Edux on the browser.
● Click the Edit icon on the right of the “View Course” in the Your

Studies section on the Individual Study you want to edit.
● Change the sections on the modal.
● Click the Save button.

Expected The selected Individual Study will be updated.

Tester Görkem Kadir Solun

Date/Result 15.09.2024 / Success.

Test ID TCF17 Category Functional Severity Critical

Objective Editing an Individual Study: Edit Fail

Steps ● Login to Edux on the browser.
● Click the Edit icon on the right of the “View Course” in the Your

Studies section on the Individual Study you want to edit.
● Change the sections on the modal.
● Click the Save button.

Expected The edit action fails, displaying an error message: “Update failed, please
retry.”

Tester Görkem Kadir Solun

Date/Result 15.09.2024 / Fail.

Test ID TCF18 Category Functional Severity Critical

Objective Deleting an Individual Study

Steps ● Login to Edux on the browser.
● Click the Delete icon on the right of the “View Course” in the Your

Studies section on the Individual Study you want to delete.
● Click the Confirm button.

Expected The selected Individual Study will be deleted.

Tester Murat Çağrı Kara

Date/Result 15.09.2024 / Success.

Test ID TCF19 Category Functional Severity Critical

Objective Open an Individual Course

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.

Expected The user will be navigated to the selected Individual Study.

Tester Murat Çağrı Kara

Date/Result 14.09.2024 / Success.

Test ID TCF20 Category Functional Severity Critical

Objective Open Flashcards

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Flashcards card on the Individual Study page.

Expected Flashcards page will be opened.

Tester Efe Kaan Fidancı

Date/Result 23.01.2025 / Success.

Test ID TCF21 Category Functional Severity Critical

Objective Open Quizzes

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Quizzes card on the Individual Study page.

Expected Quizzes page will be opened.

Tester Efe Kaan Fidancı

Date/Result 23.01.2025 / Success.

Test ID TCF22 Category Functional Severity Critical

Objective Open Instructor/Chat

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.

Expected Instructor/Chat page will be opened.

Tester Murat Çağrı Kara

Date/Result 23.10.2024 / Success.

Test ID TCF23 Category Functional Severity Critical

Objective Open Weekly Study Plan

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Weekly Study Plan card on the Individual Study page.

Expected Weekly Study Plan page will be opened.

Tester Efe Kaan Fidancı

Date/Result 19.11.2025 / Success.

Test ID TCF24 Category Functional Severity Critical

Objective Upload Syllabus

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Upload Syllabus card on the Individual Study page.
● Upload the Syllabus to the opened modal.
● Click the Upload button.

Expected The syllabus will be uploaded/updated.

Tester Efe Kaan Fidancı

Date/Result 19.11.2025 / Success.

Test ID TCF25 Category Functional Severity Critical

Objective Create Chat

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Click the Create chat button on the top left of the page.
● Fill in the opened sidebar.
● Click the Create chat button.

Expected A new chat will be created.

Tester Murat Çağrı Kara

Date/Result 23.10.2024 / Success.

Test ID TCF26 Category Functional Severity Critical

Objective Create Chat: Creation Fail

Steps ● Login to Edux on the browser.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Click the Create chat button on the top left of the page.
● Fill in the opened sidebar.
● Click the Create chat button.

Expected Chat creation failed with error: “Chat creation unsuccessful, please check
input fields and retry.”

Tester Murat Çağrı Kara

Date/Result 23.10.2024 / Fail.

Test ID TCF27 Category Functional Severity Critical

Objective Send a Message to a Chat

Steps ● Login to Edux on the browser.

● Click the “View Course” button on the Individual Study you want to
open in the Your Studies section.

● Click the Instructor/Chat card on the Individual Study page.
● Select the chat from which you want to send the message from the

sidebar.
● Type your message at the bottom of the page.
● Click the Send Message button.

Expected A new message will be sent to the chat.

Tester Murat Çağrı Kara

Date/Result 23.10.2024 / Success.

Test ID TCF28 Category Functional Severity Critical

Objective Rename Chat

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Select the chat from which you want to rename from the sidebar.
● Click the three dots on the right of the selected chat and press Edit.
● A Dialog will pop up and for the Name field write the new name.
● Click the Confirm button.

Expected The selected chat will be renamed.

Tester Murat Çağrı Kara

Date/Result 23.10.2024 / Success.

Test ID TCF29 Category Functional Severity Critical

Objective Create a Quiz from a Chat

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.

● Select the chat from which you want to create a quiz from the sidebar.
● Click the three dots on the right of the selected chat.
● Click the Create Quiz button.
● Click the Confirm button.

Expected A new Quiz will be created.

Tester Murat Çağrı Kara

Date/Result 23.01.2025 / Success.

Test ID TCF30 Category Functional Severity Critical

Objective Attaching a file to a Chat

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Select the chat from which you want to attach a file from the sidebar.
● Click the file attach button at the bottom of the page.
● Select the files and click the Confirm button.

Expected A new file will be attached.

Tester Murat Çağrı Kara

Date/Result 25.10.2024 / Success.

Test ID TCF31 Category Functional Severity Critical

Objective Deleting a Chat

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Select the chat that you want to delete from the sidebar.
● Click the three dots on the right of the selected chat.
● Click the Delete button.
● Click the Confirm button.

Expected Selected chat will be deleted.

Tester Murat Çağrı Kara

Date/Result 25.10.2024 / Success.

Test ID TCF32 Category Functional Severity Critical

Objective Create Flashcards from a Chat

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Select the chat from which you want to rename from the sidebar.
● Chat for some time
● Click the three dots on the right of the selected chat.
● Click Create Flashcard button
● Confirm a Flashcard has appeared in Flashcards

Expected A Flashcard must appear in the individual study’s flashcard section.

Tester Murat Çağrı Kara

Date/Result 23.01.2025 / Success.

Test ID TCF33 Category Functional Severity Low

Objective Ensure that users can update their profile information.

Steps ● Login to Edux.
● Navigate to the “Profile” section.
● Edit profile details (e.g., name, bio, avatar).
● Click “Save.”

Expected The updated information should be saved and displayed correctly.

Tester Görkem Kadir Solun

Date/Result 14.04.2025 / Success.

Test ID TCF34 Category Functional Severity Medium

Objective Ensure that users can insert another slide to chat.

Steps ● Login to Edux.
● Click the “View Course” button on the Individual Study you want to

open in the Your Studies section.
● Click the Instructor/Chat card on the Individual Study page.
● Select the chat from which you want to rename from the sidebar.
● Click the three dots on the right of the selected chat and press Edit.
● A Dialog will pop up and for the Upload New Slides (Optional) upload

the new slides.
● Click Confirm.

Expected A new slide will be attached.

Tester Bilginer Oral

Date/Result 14.04.2025 / Success.

5.1.1. Integration Test Cases

Test ID TCI0 Category Integration Severity Critical

Objective Retrieving courses from the course database

Steps ● Sign in as one of the users
● Call the course service's endpoint for retrieving the courses that belong

to our user

Expected ● The courses are expected to be retrieved from the course service's
database successfully.

Tester Bilginer Oral

Date/Result 19.02.2024 / Success.

Test ID TCI1 Category Integration Severity Critical

Objective Retrieving chats from the chats database

Steps ● Sign in as one of the users
● Call the course service's endpoint for retrieving the chat id’s associated

with it.
● Call the chat service’s endpoint for retrieving the chats with the given

id’s from the chat database

Expected ● The chats are expected to be retrieved from the chat service's database
successfully.

Tester Bilginer Oral

Date/Result 17.02.2024 / Success.

Test ID TCI2 Category Integration Severity Critical

Objective Getting the current user from the user database

Steps ● Sign in as one of the users
● Call any public endpoint in any service, that endpoint depends on the

current user so it will call the user service to fetch the current user.
● The current user will get the current user using the given Json web

token

Expected ● The current user is expected to be retrieved from user service’s
database

Tester Bilginer Oral

Date/Result 16.02.2024 / Success.

Test ID TCI3 Category Integration Severity Critical

Objective Uploading files to Azure Blob Storage

Steps ● Sign in to Edux
● Open up one of the existing course
● Open up one of the existing chats
● Upload a file
● Make a fetch query for the uploaded file to Azure Blob Storage

Expected ● The uploaded file is expected to be retrieved successfully from Azure
Blob Storage

Tester Cahit Ediz Civan

Date/Result 15.03.2024 / Success.

Test ID TCI4 Category Integration Severity Critical

Objective Uploading slides page by page as images to Azure Blob Storage

Steps ● Sign in to Edux
● Open up one of the course
● Create a chat by providing some slides (pdf or pptx). The course will

be created in slides mode.
● The slide pages will be uploaded page by page to Azure Blob Storage

and their id’s will be returned.
● In a loop, make a fetch query for the page images to Azure Blob

Storage.

Expected ● The slide pages are expected to be retrieved from the Azure Blob
Storage successfully.

Tester Cahit Ediz Civan

Date/Result 15.03.2024 / Success.

Test ID TCI5 Category Integration Severity Major

Objective When a chat is deleted, the files associated with it should also be deleted from
Azure Blob Storage

Steps ● Sign in to Edux
● Open up a course, find a chat that has files uploaded to it.
● Get the id’s of the files that are associated with that chat.
● Delete the chat.
● Make a query to Azure Blob Storage for those files with the given id’s.

Expected ● No files are expected to be retrieved.

Tester Cahit Ediz Civan

Date/Result 15.03.2024 / Success.

Test ID TCI6 Category Integration Severity Medium

Objective When a chat is deleted the slide histories associated with it should also be
deleted from Azure Blob Storage

Steps ● Sign in to Edux
● Open up a course, find a chat that has files uploaded to it.
● Get the id’s of the slide histories of the slides that are associated with

that chat.
● Delete the chat.
● Make a query to Azure Blob Storage for those slide histories with the

given id’s.

Expected ● No files are expected to be retrieved.

Tester Cahit Ediz Civan

Date/Result 15.03.2024 / Success.

Test ID TCI7 Category Integration Severity Major

Objective When a chat is deleted, the chat history associated with it should also be
deleted from Azure Blob Storage

Steps ● Sign in to Edux
● Open up a course, find a chat with messages.
● Get the id of the chat history.
● Delete the chat.
● Make a query to Azure Blob Storage for the chat history with the given

id.

Expected ● No file is expected to be retrieved.

Tester Cahit Ediz Civan

Date/Result 15.03.2024 / Success.

Test ID TCI8 Category Integration Severity Critical

Objective When an explanation for the current slide is asked, the response should be
inserted into the slide history.

Steps ● Sign in to Edux
● Open up a course.
● Create a chat in slides mode (upload slides during creation).
● Call the necessary endpoint for explanations on the current slide page.
● Get the id of the slide history of the current slide page.
● Make a query to Azure Blob Storage for the slide history with the

given id.
● Search for the last response (explanations) from the LLM service

inside the slide history.

Expected ● The last response from the LLM service is expected to be present in
the file.

Tester Bilginer Oral

Date/Result 15.03.2024 / Success.

5.2. Non-Functional Test Cases
5.2.1. Performance

Test ID TCNF0 Category Performance Severity Low

Objective Measure the time taken to create a new chat.

Steps ● Login to Edux and navigate to the “Instructor/Chat” section.
● Click the “Create Chat” button.
● Enter a chat name and select participants.
● Click the “Confirm” button to create the chat.
● Measure the time taken for the system to create the chat.

Expected

● The chat should be created within an acceptable time frame (must not
exceed 5 seconds).

● The chat should appear in the list of active chats.
● A confirmation message should indicate successful chat creation.

Tester Cahit Ediz Civan

Date/Result 24.04.2025 / Success.

Test ID TCNF1 Category Performance Severity Medium

Objective Measure the time taken to upload files to a chat.

Steps ● Login to Edux and navigate to the “Instructor/Chat” section.
● Select an active chat conversation.
● Click the “Attach File” button.
● Select a file (e.g., PDF, image, document) and confirm upload.
● Measure the time taken for the system to upload the file and make it

accessible.

Expected

● The file should be uploaded within an acceptable time frame (must not
exceed 8 seconds for files up to 5MB).

● The file should be accessible to all participants in the chat.
● A confirmation message should indicate successful file upload.

Tester Cahit Ediz Civan

Date/Result 23.04.2025 / Success.

Test ID TCNF2 Category Performance Severity Medium

Objective
Measure the response time of the instructor chat to ensure timely

communication.

Steps ● Login to Edux with an instructor account.
● Navigate to the “Instructor/Chat” section from the main menu.
● Select an ongoing chat conversation or create a new one.
● A student sends a message to the instructor.
● Measure the time taken for the instructor to receive the message and

respond.

Expected
● The instructor's response should be retrieved within an acceptable

timeframe (must not exceed 5 seconds).

Tester Efe Kaan Fidancı

Date/Result 23.04.2025 / Success.

Test ID TCNF3 Category Performance Severity Medium

Objective Measure the time taken to create a quiz from chat interactions.

Steps ● Login to Edux and navigate to the “Instructor/Chat” section.
● Select a chat conversation containing relevant study discussions.
● Click the “Create Quiz” button from the chat options menu.
● Confirm the quiz generation request.

● Measure the time taken for the system to generate the quiz.

Expected

● The quiz should be generated within an acceptable time frame (must
not exceed 10 seconds).

● The quiz should contain relevant questions based on the chat
discussion.

● A confirmation message should appear indicating successful quiz
creation.

Tester Efe Kaan Fidancı

Date/Result 22.04.2025 / Success.

Test ID TCNF4 Category Performance Severity Medium

Objective Measure the time taken to create a quiz from chat interactions.

Steps ● Login to Edux and navigate to the “Instructor/Chat” section.
● Select a chat conversation containing study-related content.
● Click the “Create Flashcards” button from the chat options menu.
● Confirm the flashcard generation request.
● Measure the time taken for the system to generate the flashcards.

Expected

● The flashcards should be generated within an acceptable time frame
(must not exceed 10 seconds).

● The flashcards should be relevant to the content discussed in the chat.
● A confirmation message should appear indicating successful flashcard

creation.

Tester Bilginer Oral

Date/Result 22.04.2025 / Success.

5.2.2. Security Test Cases

Test ID TCS0 Category Security Severity Critical

Objective Sign up for an account with registered mail

Steps ● Open Edux.
● Direct the page to the Sign Up page using the button Sign Up.
● Enter a mail that is already registered in the system.
● Click on the Sign Up button.
● Pop up a toaster that displays the error message “The mail is already

registered for another user.”.

Expected
The error toaster should display the message “The mail is already registered
for another user.”, and the user shall not be able to sign up for an account until
they write a mail that is not in the User database.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS1 Category Security Severity Critical

Objective Sign up for an account with a registered username

Steps ● Open Edux.
● Direct the page to the Sign Up page using the button Sign Up.
● Enter a username that is already registered in the system.
● Click on the Sign Up button.
● Pop up a toaster that displays the error message “The username is

already registered for another user.”.

Expected
The error toaster should display the message “The username is already
registered for another user.”, and the user shall not be able to sign up for an
account until they write a username that is not in the User database.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS2 Category Security Severity Critical

Objective Sign up for an account with an invalid password

Steps ● Open Edux.
● Direct the page to the Sign Up page using the button Sign Up.
● Enter a password not in the format of a valid password with at least

eight characters up to twenty-four characters, and include at least one
unique, numeric, and uppercase character in the password or check
password fields.

● Click on the Sign Up button.
● Pop up a toaster that displays the error message “This is not a valid

password; a valid password should contain at least eight characters up
to twenty-four characters and include at least one special, numeric and
uppercase character.”.

Expected

The error toaster should display the message “This is not a valid password; a
valid password should contain at least eight characters up to twenty-four
characters and include at least one special, numeric, and uppercase character.”
The user shall not be able to sign up for an account until they write a valid
password.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS3 Category Security Severity Critical

Objective Sign up for an account with Check Password and Password Fields are not
equivalent.

Steps ● Open Edux.
● Direct the page to the Sign Up page using the button Sign Up.
● Enter a valid password in the password field.
● Enter a valid password in the check password field, which differs from

the one entered in the password field.
● Click on the Sign Up button.
● Pop up a toaster that displays the error message “Two passwords do

not match.”.

Expected
The error toaster should display the message “Two passwords do not match.”,
the user shall not be able to sign up for an account until two password fields
have the same input.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS4 Category Security Severity Critical

Objective Sign in with an invalid mail

Steps ● Open Edux.
● Enter an invalid mail that is not in the format of a mail or not a mail in

the User database in the mail field.
● Enter a valid password in the password field.
● Click on the Sign In button.
● Pop up a toaster that displays the error message “Invalid credentials,

cannot find a user that has this mail in the Edux system.”

Expected

The error toaster should display the message “Invalid credentials, cannot find
a user that has this mail in the Edux system.”, the user shall not be able to sign
in for an account until the user enters a valid mail belonging to a user,
provided that they enter a valid password belonging to that user.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS5 Category Security Severity Critical

Objective Sign in with an invalid password

Steps ● Open Edux.
● Enter a valid mail in the mail field.
● Enter an invalid password, either not in the User database or the wrong

format in the password field.
● Click on the Sign In button.
● Pop up a toaster that displays the error message “Invalid credentials,

for the given user, a wrong password has been entered.”

Expected

The error toaster should display the message “Invalid credentials, for the given
user, a wrong password has been entered.”, the user shall not be able to sign in
for an account until the user enters a valid mail belonging to a user, provided
that they enter a valid password belonging to that user.

Tester Murat Çağrı Kara

Date/Result 22.10.2024 / Success.

Test ID TCS6 Category Security Severity Critical

Objective Free plan users cannot use paid plan endpoints.

Steps ● Sign in to Edux with a free plan user account.
● Create a course, create a chat.
● Send a message using a paid plan API endpoint (paid LLM APIs).

Expected The endpoint should refuse serving the user and return HTTP code “403
Forbidden”.

Tester Görkem Kadir Solun

Date/Result 16.04.2025 / Success.

Test ID TCS7 Category Security Severity Critical

Objective Unauthorized parties cannot send API requests to private interservice
communication endpoints.

Steps ● Make an API call to one of the private endpoints of any service and do
not provide an API key.

Expected The endpoint should refuse serving the caller and return HTTP code “403
Forbidden”.

Tester Bilginer Oral

Date/Result 04.04.2025 / Success.

Test ID TCS8 Category Security Severity Critical

Objective Unauthorized parties cannot send API requests to private interservice
communication endpoints.

Steps ● Make an API call to one of the private endpoints of any service and
provide an invalid API key (the API key should not be in the accepted
API keys list of the service).

Expected The endpoint should refuse serving the caller and return HTTP code “403
Forbidden”.

Tester Bilginer Oral

Date/Result 04.04.2025 / Success.

Test ID TCS9 Category Security Severity Critical

Objective Private interservice communication endpoints should serve authorized
services.

Steps ● Make an API call to one of the private endpoints of any service and
provide a valid API key (the API key should be in the accepted API
keys list of the service).

Expected The endpoint should return HTTP code “200 OK”.

Tester Bilginer Oral

Date/Result 04.04.2025 / Success.

Test ID TCS10 Category Security Severity Low

Objective Entering Invalid Email While Changing Password

Steps ● Open Edux on the browser.
● Navigate to the “Login” page.
● At the bottom of the password section, there is “Forgot Password”

click it.

● Fill in an invalid email address and click the “Reset” button.

Expected The error toaster should display the message “Invalid mail address.”

Tester Murat Çağrı Kara

Date/Result 25.04.2025 / Success.

5.2.3. Usability Test Cases

Test ID TCU0 Category Usability Severity Low

Objective Evaluate if a new user can easily sign up for an account on Edux.

Steps ● Recruit a new user. Provide them only with a brief overview of the
platform.

● Instruct the user to locate the sign-up option and create an account
using valid input data.

● Ask the user to verbalize their thoughts as they navigate through the
Sign In and Sign Up pages (i.e., a "think aloud" protocol).

● Record any difficulties or confusion regarding navigation and
responsiveness during the account creation process.

● After the task, request feedback on the overall experience, including
ease of navigation and app responsiveness.

Expected

The user is able to locate the sign-up option and successfully create an account
with minimal or no assistance. The overall experience should be reported as
intuitive, with the user reporting a positive feedback regarding the app’s
responsiveness.

Tester Cahit Ediz Civan

Date/Result 25.04.2025 / Success.

Test ID TCU1 Category Usability Severity Low

Objective Evaluate if a new user can easily sign in for an account on Edux.

Steps ● Recruit a new user. Provide them only with a brief overview of the
platform.

● Instruct the user to locate the sign-in option for a created account.
● Ask the user to verbalize their thoughts as they try to enter the

credentials(i.e., a "think aloud" protocol).
● Record any difficulties or confusion regarding navigation and

responsiveness during the account creation process.
● After the task, request feedback on the overall experience, including

ease of use and app responsiveness.

Expected

The user is able to locate the sign-in option and successfully sign in with
minimal or no assistance. The overall experience should be reported as
intuitive, with the user reporting a positive feedback regarding the app’s
responsiveness.

Tester Cahit Ediz Civan

Date/Result 25.04.2025 / Success.

Test ID TCU2 Category Usability Severity Low

Objective Assess how intuitively a user can interpret the weekly time-spent graph.

Steps ● Provide a user who has already spent some time in Edux, so they have
analytics data.

● Instruct user to sign in to their account
● Note if they understand the bar chart without extra explanation.
● Ask them if the labeling of days/hours is clear.
● After the task, request feedback on the overall experience.

Expected
The user should be able to read and interpret the data (e.g., quickly see how
many hours they studied on a given day). No or minimal confusion about the
meaning of chart.

Tester Efe Kaan Fidancı

Date/Result 25.04.2025 / Success.

Test ID TCU3 Category Usability Severity Low

Objective Assess how intuitively a user can resume their course.

Steps ● Ask the user to find and open one of their existing courses from the
dashboard.

● Instruct user to route to the Course Dashboard through Your Individual

Study container after user signed in via View Course button.
● Record any difficulties or confusion regarding navigation process.
● After the task, request feedback on the overall experience, including

ease of use and app responsiveness.

Expected

The user should be able to find the container within 5 seconds without
needing help. The user should recognize View Course as a clickable element
and not be confused by the terminology. User shall successfully go to the
course dashboard without assistance.

Tester Efe Kaan Fidancı

Date/Result 25.04.2025 / Success.

Test ID TCU4 Category Usability Severity Low

Objective Assess how intuitively a user can access the chat feature from the dashboard.

Steps ● Provide a user who has already spent some time in Edux and have chat
data for a course.

● Ask the user to locate the Chat redirection card on the dashboard.
● Instruct the user to click on the Chat card to open the chat interface.
● Record any difficulties or confusion regarding the navigation process.
● After the task, request feedback on the overall experience, including

ease of use and app responsiveness.

Expected

The user should be able to find the Chat card within 5 seconds without
assistance. The user should recognize the Chat card as a clickable element
without confusion regarding its purpose. The chat interface should open
successfully, allowing the user to start a conversation without additional
guidance.

Tester Efe Kaan Fidancı

Date/Result 25.04.2025 / Success.

Test ID TCU5 Category Usability Severity Low

Objective Assess how intuitively a user can navigate to the Skill Tree from the
dashboard.

Steps ● Provide a user who has already spent some time in Edux and have chat
data for a course.

● Ask the user to locate the Skill Tree redirection card on the dashboard.
● Instruct the user to click the Skill Tree card to navigate to the Skill

Tree section.
● Record any difficulties or confusion regarding the navigation process.
● After the task, request feedback on the overall experience, including

ease of use and app responsiveness.

Expected

The user should be able to find the Skill Tree card within 5 seconds without
needing help. The card should be clearly identifiable as a clickable element
that directs the user to view their skill progression. The Skill Tree section
should load correctly, enabling the user to view and interact with their learning
progress effortlessly.

Tester Cahit Ediz Civan

Date/Result 25.04.2025 / Success.

Test ID TCU6 Category Usability Severity Medium

Objective Assess how intuitively a user can start and interact with the Chat feature.

Steps ● Recruit a new user. Provide them only with a brief overview of the
platform.

● Instruct the user to locate to the chat screen for a pre-created account
with a pre-created existing Individual Study.

● Open a chat with pre-uploaded material for that Individual Study.
● Ask user to navigate in the slides inside of chat mode.
● Observe if the user understands how to type and send a message

without assistance.
● Record any difficulties or confusion regarding message input, chatbot

responses, or chat functionality.
● After the task, request feedback on the overall experience, including

ease of use, clarity of responses, and app responsiveness.

Expected
The message input field and send button should be easily recognizable and
usable. The chatbot should respond appropriately to the user’s question.
The user should find the interaction smooth and intuitive, with minimal

confusion regarding how to ask a question or interpret the chatbot’s responses.

Tester Bilginer Oral

Date/Result 25.04.2025 / Success.

5.2.4. Document Test Cases

Test ID TCD1 Category Documentation Severity Medium

Objective Verify the availability and correctness of the User Manual.

Steps ● Navigate to the “Help” or “Documentation” section in Edux.
● Click the link for the User Manual.
● Download or open the User Manual.
● Verify that the document includes accurate descriptions of features,

workflows, and images.
● Confirm that contact/support information is included.

Expected
● The User Manual opens or downloads successfully.
● Content matches the latest system version.
● No broken links, grammar, or formatting issues.

Tester Efe Kaan Fidancı

Date/Result 22.04.2025 / Success.

Test ID TCD2 Category Documentation Severity Low

Objective Ensure the Terms of Service document is accessible from the Sign-Up page.

Steps ● Navigate to the Edux Sign-Up page.
● Locate the “Terms of Service” link.
● Click the link.
● Verify that the document opens and is readable.

Expected ● Terms of Service opens without errors in a new window or tab.
● The content is readable and up-to-date.

Tester Efe Kaan Fidancı

Date/Result 21.04.2025 / Success.

Test ID TCD3 Category Documentation Severity Low

Objective Confirm that the Privacy Policy document is available and complies with
GDPR standards.

Steps ● Navigate to the “Privacy Policy” link in the footer of the application.
● Click the link.
● Review if GDPR compliance statements are included.
● Confirm sections on data handling, user rights, and contact

information.

Expected
● Privacy Policy loads successfully.
● GDPR compliance statements are present.
● Content is accurate and clear.

Tester Efe Kaan Fidancı

Date/Result 23.04.2025 / Success.

Test ID TCD4 Category Documentation Severity High

Objective Verify the installation guide covers all deployment methods (Docker,
Kubernetes, Azure) [This is for developers only].

Steps ● Access the Edux API documentation
● Locate and download the installation guide.
● Review sections for Docker setup.
● Review sections for Kubernetes deployment via AKS.
● Verify cloud storage (Azure Blob) instructions are clear.

Expected
● The guide provides step-by-step instructions.
● Commands are correct and reproducible.
● Screenshots or diagrams are present.

Tester Efe Kaan Fidancı

Date/Result 21.04.2025 / Success.

Test ID TCD5 Category Documentation Severity Medium

Objective Confirm the API documentation includes complete and accurate endpoint
details [This is for developers only].

Steps ● Access the Edux API documentation
● Check authentication endpoints.
● Verify endpoint parameters, request/response formats, and error codes

are correct.
● Look for versioning information.

Expected
● API documentation is complete, accurate, and up-to-date.
● Example requests/responses are available.
● Includes authentication/token instructions.

Tester Cahit Ediz Civan

Date/Result 16.04.2025 / Success.

6. Maintenance Plan and Details
This maintenance plan outlines the strategies and procedures for ensuring the long-term

stability, performance, and scalability of the Edux platform. The plan covers both corrective and
preventive maintenance approaches, including bug fixes, updates, performance optimizations,
and security enhancements. It also details the roles and responsibilities of the maintenance team,
the tools and processes to be used, and the schedule for regular maintenance activities.

The maintenance plan centers around four key objectives.

● Corrective maintenance focuses on swiftly addressing and resolving any bugs, errors, or
issues that users report or that system monitoring identifies.

● Preventive maintenance aims to proactively update and optimize the system, working to
prevent potential problems and ensure its continuous smooth operation.

● Adaptive maintenance involves modifying the system to effectively accommodate new
requirements, integrate with emerging technologies, or adapt to changes in the
operational landscape.

● Perfective maintenance is dedicated to enhancing the system's performance, improving its
usability, and adding new functionalities based on user feedback and evolving needs
through user experience improvements and ongoing performance enhancements.

The maintenance process leverages a suite of essential tools to ensure efficiency and

effectiveness. Version control is managed through GitHub, facilitating code management and
seamless team collaboration. Issue tracking is handled by Jira, which is used for logging,
prioritizing, and meticulously tracking both bugs and development tasks [21]. CI/CD pipelines
are automated using GitHub Actions, streamlining testing and deployment processes [22].
Finally, Communication within the team and for incident reporting relies on platforms like Slack
and Microsoft Teams, ensuring clear and timely information exchange [23, 24].

7. Other Project Elements
7.1. Consideration of Various Factors in Engineering Design

Our team considered multiple engineering, social, and ethical factors in the design of
Edux:

● Public Health and Welfare: Edux helps reduce cognitive overload by organizing study
efforts, supporting students' mental well-being.

● Global and Cultural Considerations: With plans for multilingual support and accessibility
features, Edux aims to serve a diverse, global audience.

● Environmental Considerations: By using cloud-native and scalable infrastructure, we
minimize physical hardware waste and energy usage.

● Economic Considerations: Our pricing and resource usage strategies (e.g., free Gemini
API tier) ensure affordability and operational sustainability.

7.1.1. Constraints
The implementation of LLM-based features necessitated careful strategies for efficient

memory and API usage due to their computational demands. Economically, costs were
effectively managed by leveraging free services such as MySQL, Docker, and the Gemini API.
From a regulatory standpoint, compliance with GDPR and KVKK [8, 25] was ensured through
the encryption of sensitive data and the secure implementation of HTTPS for all user
communication. Finally, the system's architecture prioritizes scalability, enabling it to handle
peak academic season loads and accommodate future feature expansions without requiring
substantial modifications.
7.1.2. Standards

Adherence to established software engineering standards was a priority throughout the
development process. For Coding Practices, we followed PEP8 guidelines for our Python
services and utilized ESLint for maintaining consistency in the frontend codebase. Regarding
Security, we implemented JWT authentication, API key validation, and adhered to OAuth2
standards to ensure robust protection. Design Documentation was created using UML diagrams

for comprehensive system modeling and OpenAPI specifications for clear service
documentation. Finally, in the realm of Data Handling, we adopted GDPR and KVKK-compliant
storage and access practices to safeguard user information.

7.2. Ethics and Professional Responsibilities
7.2.1. Ethical Considerations

Public Health and Safety

Edux is designed with learners’ mental and intellectual well-being in mind, recognizing that
effective study tools can alleviate cognitive stress. By providing adaptive study schedules,
interactive flashcards, and quizzes tailored to individual needs, the platform supports students’
mental health while encouraging efficient time management. Beyond cognitive benefits, Edux
implements encrypted storage to protect sensitive user data such as course materials and personal
credentials. These measures align with international data-protection laws like GDPR and KVKK,
ensuring that both privacy and safety are upheld.

Welfare and Security

Although Edux does not directly deliver healthcare services, it contributes to social welfare by
democratizing access to high-quality educational resources. By reducing barriers to personalized
learning, the platform helps bridge inequalities in educational opportunity. Simultaneously,
Edux’s security architecture featuring transactional data handling, automated backups, and
failover mechanisms safeguards user progress and ensures system reliability, reinforcing trust
that learners’ efforts and records will remain intact even in the face of technical disruptions.

Global and Cultural Impact

Edux is built to serve an international audience: the default interface is in English, with plans for
multilingual support in future releases. Careful attention to cultural diversity underpins the
platform’s AI-generated content, with explicit efforts to identify and remove biases so that
explanations, quizzes, and recommendations remain fair and inclusive. Free plan for underserved
communities further extend the platform’s reach and reinforce its commitment to equal learning
opportunities worldwide.

Social, Environmental, and Economic Responsibility

Handling sensitive educational data obliges Edux to uphold the highest ethical standards in data
collection and usage. The system never employs hidden data-mining techniques; any datasets
used for model training such as medical or scholarly corpora are obtained transparently from
reputable institutions with proper consent. Environmentally, Edux encourages efficient use of

computational and physical resources, promoting sustainable practices in affiliated institutions to
minimize waste. Economically, the platform adopts a tiered subscription model, balancing
affordability for regular student users with revenue streams for advanced features.

7.2.2. Professional Responsibilities

Engineering Best Practices and Compliance

Upholding professional standards in software engineering is central to Edux’s long-term
viability. The codebase is organized into modular microservices, each accompanied by clear
documentation and consistent naming conventions. Version control through GitHub and
continuous integration pipelines ensure that new features and bug fixes are deployed
systematically and safely. These practices not only facilitate swift onboarding of new team
members but also minimize the risk of regressions, ensuring that the platform can evolve without
compromising existing functionality. Adherence to data-protection regulations and the strength
of its engineering disciplines are central to Edux's professional integrity.

Collaborative Teamwork and Ethical Leadership

Professional responsibility extends beyond code to the people who build it. The Edux team
employs Jira for transparent task tracking and holds weekly meetings led by a rotating Scrum
Master to distribute leadership opportunities. By recording notes in shared documents, discussing
challenges openly, and pairing members on complex issues, the team fosters an inclusive
environment where all voices are heard and respected. This structure not only drives
accountability but also cultivates a culture of mutual support, ensuring that every decision from
technical design to user-experience considerations is made with ethical deliberation and
collective ownership.

7.3. Teamwork Details
7.3.1. Contributing and functioning effectively on the team to establish goals,

plan tasks, and meet objectives
Our team maintained a consistent rhythm of communication through weekly meetings,

strategically focused on several key objectives. These meetings served as a platform to set clear
milestones and define sprint goals, effectively managed through Jira. Responsibilities were
carefully divided across the various components of the project, including microservices, the
frontend, and cloud deployment strategies. Crucially, these sessions also ensured that every team
member actively contributed their expertise and effort to all phases of the project, encompassing
design, implementation, and rigorous testing.

Bilginer Oral

Bilginer Oral was an important contributor to the Edux platform from the beginning. He worked
on many parts of the system, including backend services, system design and testing. His work
helped the platform become stable, scalable, and easy to maintain during the whole project. From
the early stages, he gave advice on architecture, especially about microservices, database
structure, and CI/CD pipelines. He also helped create rules for API design, service
communication, and good documentation.

On the backend side, Bilginer led the development of main services like authentication,
notifications, and file handling. He used FastAPI to build secure token-based login systems and
managed user permissions across services. His notification system supported both real-time and
scheduled messages. His file service allowed users to upload files safely and access them. He
also worked on setting up service discovery, managing settings for different environments, and
using Docker for containers. This made deployments easier for the team. He improved
monitoring and debugging by adding logging and alerting tools to make sure everything was
ready for production.

Bilginer also worked a lot on testing and DevOps. This helped find bugs earlier and improve
code quality. He wrote scripts for database seeding, migrations, and test setups, which made it
easier for new developers to join and test the system. He joined code reviews and debugging
sessions often, giving helpful feedback and making sure the code followed shared standards. His
documentation about services and setup steps helped the team work better and made the final
product more professional.

Cahit Ediz Civan

Cahit Ediz Civan was a key contributor to the platform’s backend and DevOps
infrastructure, playing a pivotal role in the transition from a monolithic architecture to a scalable
microservices-based system. His work laid the foundation for long-term maintainability and
developer efficiency across the project.

Cahit Ediz Civan began by containerizing the initial monolithic application, setting the
stage for future modularization. As the system evolved, he co-led the architectural design of the
microservices backend with Bilginer, ensuring a clean separation of concerns and improved
scalability. After the full migration to microservices, Cahit Ediz Civan took charge of
dockerizing the entire backend ecosystem, including multiple services and their associated
databases, dramatically reducing the complexity of local and remote deployments. Deployed the
project on Azure Kubernetes Services after creating the Kubernetes configurations. Cahit Ediz
Civan efforts were instrumental in streamlining the developer workflow and improving team
adoption of modern DevOps practices.

In addition to infrastructure work, Cahit Ediz Civan designed and implemented the
backend service for the skill tree feature, enabling dynamic representation of user progress and
learning dependencies. Cahit Ediz Civan contributions extended beyond code, as he frequently
supported team members through large pull request reviews and deep dives into complex
backend flows. He was recognized as a go-to problem solver within the team, often assisting
with debugging, architecture questions, and technical blockers throughout the project.

Cahit Ediz Civan technical leadership, commitment to maintainability, and willingness to
tackle challenging backend tasks made him a core asset to the team during a period of significant
architectural transition.

Efe Kaan Fidancı

Efe Kaan Fidancı was responsible for a wide range of contributions across the frontend,
backend, prompt engineering, project management, and reporting components of the final
project. Notably, he was highly collaborative, working closely with other team members to
ensure seamless integration of features, resolve cross-functional issues, and maintain alignment
with project goals.

On the frontend, Efe Kaan Fidancı implemented and iteratively updated the user
interfaces of the quiz, flashcard, and syllabus modules. These components were redesigned
multiple times to align with the new microservice architecture and the Shadcn/UI component
library. He introduced general responsiveness improvements, such as loading spinners, and
visual enhancements, including an image loader for the sign-in page. The course dashboard’s
layout and appearance were also improved under his supervision. Additionally, he addressed and
resolved multiple frontend bugs to ensure a smoother user experience. Beyond these tasks, he
took ownership of implementing and managing updates to the project website, ensuring it
remained up-to-date with the latest reports and improvements.

On the backend, Efe Kaan Fidancı implemented the initial CRUD operations for the
flashcard service and assisted in developing CRUD functionalities for quizzes and syllabuses. He
contributed to fixing several backend issues, such as incorrect validations, and supported the
dockerization of microservices. Furthermore, he participated in the integration and debugging
processes, working collaboratively with teammates to identify and resolve issues that arose
during the microservices transition.

In prompt engineering, Efe Kaan Fidancı helped tailor and refine specific prompts used
by the large language model (LLM) to ensure more accurate and context-aware responses
aligned with the platform’s educational goals. His collaborative approach ensured that these
prompts were optimized through team feedback and testing.

For project management, he played an active role in generating and assigning tasks using
Jira, fostering transparency and accountability within the team. He created multiple Confluence

pages to document research and planning efforts and occasionally took the lead during Scrum
meetings to guide discussions and maintain progress.

Lastly, Efe Kaan Fidancı contributed to all required reports, supporting the preparation of
comprehensive and well-structured documentation throughout the project. His attention to detail
and teamwork ensured that all deliverables were completed to a high standard.

Görkem Kadir Solun

I am a principal contributor to the Edux platform, engaging across its full-stack lifecycle
from system design and architecture through to deployment and documentation. While
supporting all facets of the project, his most significant efforts centered on the Skill Tree, Profile,
and Course modules, followed by pivotal work on the main page, the Syllabus & Study Plan,
Notifications, Chat system, and Quiz functionality.

On the client side, I architected and implemented the dynamic Skill Tree interface using
Next.js, introducing interactive progression indicators, drag-and-drop lesson ordering, and
real-time unlock animations to guide learners through personalized learning paths. He
overhauled the Profile section, integrating advanced settings panels, progress visuals, and
preferences management, all within a reusable, component-driven UI library. For the Course
pages, he crafted responsive layouts that support rich media embedding, lesson navigation
controls, and contextual tooltips, ensuring a seamless study flow. I helped with the redesign of
the main landing page optimizing sections, call-to-action modules, and performance-tuned image
loading to boost first-impression engagement and reduce time-to-interactive.

I helped with microservices in FastAPI (with SQLAlchemy and MySQL) to power the
Skill Tree’s dependency logic, user progress tracking, and achievement validations. I contributed
the data models and endpoints for the Profile service handling user metadata, privacy controls,
and avatar management and extended the Course API to support modular lesson retrieval,
versioning, and metadata filtering. My contributions to the Syllabus & Study Plan service
automated weekly plan generation based on enrolled courses and user availability, complete with
cron-driven notifications and adjustment hooks.

I instituted comprehensive unit and integration tests across his modules employing pytest
fixtures, CI pipelines, and coverage thresholds to maintain system reliability as new features
rolled out. I coordinated closely with peers, leading code reviews and pairing sessions focused on
reusable patterns and performance optimizations. My documentation of API schemas, data flows,
and deployment steps became the backbone of the project’s final technical report.

Murat Çağrı Kara

Murat Çağrı Kara was a key developer responsible for the full-stack implementation of
the Edux platform, delivering critical infrastructure and feature sets across frontend, backend,

and platform architecture. His contributions spanned system design, coding, debugging,
optimization, and team coordination.

On the frontend, Murat Çağrı Kara designed and built a modular, responsive interface
using Next.js, integrating seamlessly with the platform’s evolving microservice architecture. He
implemented core user flows in frontend, including authentication, subscription management,
dashboard navigation, chat, skill-tree, skill-tree-quiz and notifications, ensuring a cohesive and
intuitive user experience. Murat Çağrı Kara placed strong emphasis on reusability and
component-driven architecture, enabling scalability as the platform grew. He also took the lead
in enhancing key learning features, such as the weekly study plan, skill tree, and user profile
interfaces, introducing dynamic layouts, visual indicators, and improved interaction patterns to
boost user engagement. His attention to detail extended to UI polish and performance
optimization, contributing significantly to the responsiveness and stability of the frontend
experience.

On the backend, Murat Çağrı Kara developed multiple microservices using FastAPI with
SQLAlchemy ORM and a MySQL database. He was responsible for the architecture and
implementation of foundational systems such as subscription and payment logic, and user
analytics tracking. He also built robust APIs for managing course data and user interactions,
ensuring proper validation, error handling, and performance. His backend services were
thoroughly dockerized and integrated into the platform’s deployment pipeline, contributing to a
more maintainable and production-ready system. Additionally, he led the resolution of several
complex backend bugs, particularly in chat synchronization and course delivery mechanisms,
which were critical to platform reliability.

In terms of project management and collaboration, Murat Çağrı Kara played a central role
in setting development standards, managing implementation timelines, and supporting other team
members. He actively participated in task planning and delegation, providing technical guidance
when needed. His contributions extended to the reporting and documentation phases, where he
helped compile and structure detailed technical documentation and final reports. His leadership
ensured alignment between frontend and backend development efforts and maintained the overall
coherence of the system throughout the project lifecycle.

7.3.2. Helping creating a collaborative and inclusive environment
Continuous collaboration and feedback were facilitated through the use of GitHub and

Google Meets. Every idea brought forth was openly discussed among the team, and all decisions
were ultimately reached through consensus. Furthermore, we placed a strong emphasis on
ensuring the active involvement of every team member in both the design and development
decision-making processes.

7.3.3. Taking lead role and sharing leadership on the team
To foster shared responsibility and diverse skill development, team members rotated

leadership roles across different aspects of the project, including sprints, daily standups, and
integration phases. This distributed leadership model encompassed DevOps coordination,
ensuring smooth deployment and infrastructure management; System testing and QA,
maintaining high standards of quality assurance; Frontend-Backend API integration, facilitating
seamless communication between different parts of the application; and Documentation and
presentations, ensuring clear communication of progress and technical details.
7.3.4. Meeting objectives

In assessing the progress of our Senior Design Project against the objectives outlined in
the original Project Plan and Functional Requirements, we find that the Minimum Viable
Product (MVP) phase has achieved a significant portion of its initial goals. The milestones we set
have been partially or fully realized across most areas, though a few key features remain to be
completed post-project.

Achieved Objectives

● Interactive Learning Tools
 Status: Met at a High Level
Flashcards and quizzes are generated from user-uploaded content using LLMs. These tools
were tested and validated for user engagement and educational value. The flashcard and quiz
creation workflows were implemented successfully as described in the use case scenarios
and activity diagrams in the Analysis Report.

● Skill Tree System
 Status: Met at a High Level
The dynamic, interactive skill tree feature was developed and deployed, allowing users to
unlock quizzes in a hierarchical learning path based on topic progression and performance.
Backend logic, frontend components, and database integration were all completed as
planned. Unit and integration tests validated its reliability.

● Chat Functionality and Slide Interaction
 Status: Met at a High Level
Users can upload slides, receive page-by-page explanations, and engage in LLM-based
conversations to enhance comprehension. Chat features are integrated into individual
studies, with UI and logic working as intended.

● Study Schedule Generation
 Status: Met at a High Level
The weekly study plan generation is operational. It updates dynamically upon syllabus

uploads and takes user performance into account. This matches the objectives outlined in the
original plan.

● System Stability, Usability, and Compliance
 Status: Confirmed via Testing and User Feedback
The system was tested for reliability and user satisfaction. It met the usability benchmark of
95%, amongst the users that used our app, task completion in under three clicks.
GDPR-compliant data security measures were implemented.

Inprogress Objectives

● Retrieval-Augmented Generation (RAG)
 Status: Backend Incomplete, UI Design Complete, Research Done
The RAG component, which was expected to generate context-aware and personalized
practice questions, was not completed. While preliminary design and planning were done
and its logic and models were outlined and UI components designed; implementation was
postponed and will be addressed beyond the scope of Senior Design Project.

Summary
 The Edux platform has successfully delivered the majority of its core features as outlined
in the original analysis and requirements. The system fulfills its MVP goals and lays the
foundation for further development.

7.4. New Knowledge Acquired and Applied
To successfully design and implement the advanced features of Edux, our team needed to

deepen its understanding in several technical and pedagogical domains. One of the primary areas
of learning was Large Language Models (LLMs). Through workshops, and individual study
sessions, we explored the architecture and use cases of modern LLMs, including their
capabilities for summarization, question generation, and interactive assistance. We gained
hands-on experience integrating the Gemini API and evaluated alternatives such as OpenAI and
Hugging Face. This knowledge was crucial in enabling features such as AI-generated flashcards,
quizzes, contextual explanations, and the foundation of our chat-based learning assistant [26, 27].

Another critical area of expertise developed during the project was personalized learning

tool integration. We investigated methods to transform static learning resources into dynamic
study aids tailored to each learner’s progress and needs. Concepts such as adaptive scheduling,
content chunking, and performance-based prioritization were studied and implemented in our
skill tree and personalized study schedule modules. Our understanding of educational
psychology and personalized learning strategies grew as we examined academic research and

industry implementations, which informed how Edux supports learners with different styles and
schedules.

We also delved deeply into progress tracking methodologies, a key component in

maintaining learner engagement and promoting continuous improvement. By analyzing dynamic
data from user interactions such as quiz performance, study duration, and content revisitation we
created models that offer real-time progress updates. This required learning about behavioral
analytics, UX best practices, and data visualization techniques. Our application of these insights
is visible in the dashboards and performance metrics available to both learners and
instructors.Beyond technical domains, we emphasized collaborative learning practices to
facilitate continuous team-wide growth. We conducted regular knowledge-sharing sessions
where team members presented their findings, demoed prototypes, or discussed implementation
challenges. This culture of shared learning not only accelerated our problem-solving ability but
also ensured that every member contributed to and understood the evolving architecture of Edux.
In parallel, we actively followed trends and developments in educational technology and AI by
subscribing to journals, joining online communities, and attending relevant conferences. These
efforts helped us stay aligned with best practices and emerging standards in data privacy (e.g.,
GDPR/KVKK), AI safety, and scalable architecture design. As a result, our system reflects not
only academic rigor and engineering discipline but also ethical and practical considerations
appropriate for a modern educational platform.

Through strategic planning, hands-on implementation, and continuous learning, our team

successfully acquired and applied new knowledge across multiple dimensions. These efforts
allowed us to transform our initial concept into a robust, forward-thinking solution that aligns
with the needs of today’s learners and educators.

8. Conclusion and Future Work

Throughout this senior design project, we have successfully architected, implemented,
and validated Edux, an AI-driven learning platform that unifies content ingestion, personalized
study aids, and interactive analytics within a scalable microservices framework. Beginning with
a comprehensive requirements analysis, we decomposed the system into modular services like
Authentication, User, Course, Chat, GenAI, and FileManager each secured via JWT and API-key
protocols and orchestrated on Azure Kubernetes Service [28]. On the frontend, we delivered a
responsive React.js interface that empowers learners to upload a wide range of materials, engage
with AI-powered explanations, and generate flashcards, quizzes, and skill trees. The backend
transformation into RESTful microservices has not only boosted maintainability and
performance under peak loads, but also laid the groundwork for smooth horizontal scaling.
Functional and non-functional test suites validated our features against usability, reliability,
security, and performance goals. Consideration of public health, safety, environmental, cultural,

and economic factors further ensured that Edux meets both technical and societal standards. Our
collaborative team dynamics and clear version-control practices enabled us to iterate efficiently,
incorporate user feedback, and deliver a robust platform ready for real-world adoption.

Looking ahead, there are numerous avenues to extend and enrich Edux’s capabilities.
First, we plan to broaden media support by integrating audio and video resources: automatic
transcription, summarization, and context-aware Q&A on lecture recordings would cater to
varied learning styles. A native mobile application with offline caching would enable
uninterrupted study in low-connectivity environments. To deepen personalization, we envision
incorporating reinforcement-learning algorithms that adapt the sequence and difficulty of quizzes
and flashcards based on real-time performance metrics.

On the social front, adding synchronous collaboration features such as group study rooms
with live chat, shared whiteboards, and peer-review workflows can foster community and peer
learning. An instructor dashboard with advanced analytics and early-warning alerts would
empower educators to intervene proactively when learners struggle. Extending interoperability
through LTI or RESTful APIs would allow Edux to plug into institutional LMS platforms (e.g.,
Moodle, Canvas) and third-party content repositories, broadening its reach.

Future iterations could explore Retrieval-Augmented Generation (RAG) with
domain-specific knowledge bases to produce highly contextualized practice questions and
project feedback. Furthermore it can have the functionality of Report Code Checker, which is
intended for instructors to evaluate consistency between student code and reports. Incorporating
generative models for code evaluation and plagiarism detection would streamline assignment
grading and uphold academic integrity. Gamification elements such as badges, achievement
unlocks, and leaderboards could boost motivation and sustained engagement. Finally, expanding
multilingual support, accessibility features (voice interfaces, high-contrast themes), and
privacy-preserving analytics will ensure that Edux grows into an inclusive, secure, and globally
adaptable learning ecosystem [29].

9. Glossary

AKS (Azure Kubernetes Service)

Azure Kubernetes Service (AKS) is a managed Kubernetes service provided by
Microsoft Azure. It simplifies the deployment, scaling, and management of Kubernetes clusters,
integrating with Azure’s security, monitoring, and networking features.

API (Application Programming Interface)

An Application Programming Interface (API) is a set of protocols and tools that allow
different software applications to communicate with each other. APIs enable developers to access

specific functionalities or data from external services without understanding their internal
workings.

Azure Blob Storage

Azure Blob Storage is Microsoft’s cloud-based object storage solution designed for
unstructured data such as images, videos, backups, and logs. It provides high availability,
scalability, and security for storing large amounts of data [7].

D

Docker

Docker is an open-source platform that enables developers to automate the deployment of
applications within lightweight, portable containers. These containers package the application
along with their dependencies, ensuring consistency across different environments.

G

GDPR (General Data Protection Regulation)

The General Data Protection Regulation (GDPR) is a comprehensive data protection law
enacted by the European Union to safeguard individuals' data and privacy. Implemented in 2018,
it imposes strict guidelines on data collection, processing, and storage, with significant penalties
for non-compliance [8].

H

HTTPS (HyperText Transfer Protocol Secure)

HTTPS is an internet communication protocol that ensures secure data transfer between a
user’s web browser and a website. It is an encrypted version of HTTP (HyperText Transfer
Protocol) and is widely used to protect sensitive information such as login credentials, payment
details, and personal data from cyber threats.

I

ID (Identifier)

An Identifier (ID) is a unique symbol or sequence assigned to an entity to distinguish it
from others. IDs are essential in databases, programming, and various systems to efficiently
reference and manage specific records or objects.

K

Kubernetes (K8s)

Kubernetes is an open-source system for automating the deployment, scaling, and
management of containerized applications. It provides load balancing, service discovery, and
self-healing capabilities, making it ideal for managing large-scale containerized workloads.

L

LLM (Large Language Model)

A Large Language Model (LLM) is an advanced artificial intelligence system trained on
extensive text datasets to understand and generate human-like language. These models are
pivotal in natural language processing tasks, including text generation, translation, and sentiment
analysis.

M

MySQL

MySQL is an open-source relational database management system (RDBMS) that uses
SQL for accessing and managing data. It is widely used for web applications, data storage, and
processing large-scale structured data.

R

RAG (Retrieval Augmented Generation)

Retrieval Augmented Generation (RAG) combines large language models with external
data sources to enhance the accuracy and relevance of generated content. RAG systems can
produce more informed and contextually appropriate responses by retrieving pertinent
information from databases or documents.

S

SHA-256 (Secure Hash Algorithm 256-bit)

SHA-256 is a cryptographic hash function used widely in various security applications
and protocols, including SSL certificates and blockchain technology. It provides a fixed-size
256-bit (32-byte) hash that is nearly unique for different inputs and is used for ensuring data
integrity.

T

TPS (Transactions Per Second)

Transactions Per Second (TPS) is a metric used to measure the number of transactions a
system can process in one second. It's commonly used to assess the performance and scalability
of databases, networks, and other transactional systems.

Edux User Manual

1 - Logging into Edux

1.1 - Sign-up

In the top left corner, the logo of Edux is displayed, identifying the website's brand. Situated in the
top right corner is a "Sign in" link, providing users with access to either create a new account or
log in to an existing one. Via the page new users may create a new account. This form includes
fields for users to input their email address, desired username, and password, along with a
confirmation field for the password.

At the bottom of the form, a "Sign up" button allows users to submit their details and establish an
account. Directly below this button, a note informs users that by clicking "continue," they are
agreeing to the website's Terms of Service and Privacy Policy, a standard practice for ensuring
user awareness of the legal agreements.

1.2 - Sign-in

This depicts the sign-in page for the Edux website, designed to facilitate user access to their
accounts. At the top left, the Edux logo represents the brand, while the top right offers a "Sign up"
link for new users. The central sign-in form includes fields for entering an email address and
password, accompanied by a "Sign in" button and a "Forgot password?" link for password
recovery. Users also have the option to log in conveniently using their Google accounts through
the "Continue with Google" button. The page emphasizes user agreement to the Terms of Service
and Privacy Policy upon login. Additionally, the left side features an image displayer, enhancing
the professional and inviting atmosphere of the platform.

2 - Edux Homepage

This page displays the dashboard of the Edux platform, designed to provide users with a
comprehensive and interactive learning experience. At the top, the navigation bar includes links to
"About" and "Services," along with a search function and icons for notifications and a profile
menu. The main section features several educational tools: "Skill Tree" for structured learning,
"Chat" for interactive learning via chatbot, "Quizzes" for knowledge testing, and "Flashcards" for
memorization. Additionally, a user analytics section presents a bar graph of weekly activity,
highlighting engagement patterns. The "Your Studies" section lists user generated courses such as
"Automata Theory," "Computational Geometry," and "Algorithms," with options to view each
course and add new ones.

This dashboard offers a user-friendly interface, allowing easy navigation and access to various
learning resources and progress tracking.

3 - Edux Course Dashboard

Welcome to your edux course dashboard! This area provides access to four key study tools:
● Flashcards: These digital, flippable cards are AI-generated based on your specific chat
interactions, offering a dynamic way to review concepts. You'll find them within each chat, with
the possibility of having none or several.
● Quizzes: Similar to the flashcards, these multiple-choice assessments are tailored to
individual chat sessions, allowing you to test your understanding of the material discussed.
● Instructor (LLM-Chat): Engage directly with our AI-powered chat to explore lecture slides
and deepen your understanding of the course content.
● Syllabus: Here, you can leverage the LLM to create a personalized study plan based on the
course syllabus.

4 - Edux Chat Window

The Edux Chat feature is designed as an interactive learning platform where you can engage with
a sophisticated AI assistant to explore ideas and get answers related to your coursework.

1. Accessing Chat:

- From the main Edux Homepage, you can access the general "Chat" feature.
- Within a specific course, like "Senior Design Project," there's a dedicated chat section.

2. Chat Interface Layout:

- Course Context: The top of the chat interface clearly shows the course context you are
currently in (e.g., "Senior Design Project").
- Chat List Sidebar (Left): This panel on the left lists all the individual chat sessions you've
created within that specific course context. Initially, it might show "No chats yet". You can select
different chats (e.g., "Unit 1", "Unit 3") from this list.
- Main Chat Area (Center): This is where the conversation with the AI assistant takes
place. It displays both your messages and the AI's responses.
- Slide Viewer (Optional): If you've uploaded slides for a chat, they can be displayed
alongside the conversation, allowing you to reference specific content like outlines and objectives
while chatting.
- Top Bar: Contains navigation elements like "About" and "Services," a search bar for
Edux, and potentially profile/notification icons. It also has buttons like "New Chat".

3. Key Features:

- Starting a Chat: When you first enter the chat section for a course, you might see a
welcome message prompting you to "Begin Your Experience".
- Creating New Chats: Click the "New Chat" button. You'll be prompted to provide a "Chat
Title" (e.g., "Unit 1") and can optionally upload presentation slides relevant to that chat topic.
- AI Interaction: Type your questions or prompts into the message box at the bottom. The
AI assistant can help explain course materials, answer questions about specific topics shown on
slides, or discuss concepts.
- Editing Chats: You can modify existing chats. The "Edit Chat" option allows you to
update the chat title and upload different or additional slides.
- Deleting Chats: You can remove chats you no longer need. The system will ask for
confirmation because deletion is permanent.
- Changing Courses: The chat sidebar lists the chats within the currently selected course
("Senior Design Project" in the examples). You can change the course from the upper left corner.

5 - Edux Course Quizzes

On the Flashcards page, you'll find AI-generated flashcards specifically designed to reinforce your
understanding of the course material based on your lecture explanation chats. This section displays
all flashcards created for the course, allowing you to rename or delete them as needed. Simply
click on a card to reveal its content.

6 - Edux Course Flashcards

The Quizzes page presents AI-generated multiple-choice quizzes derived from your lecture
explanation chats, enabling you to assess your comprehension of specific topics. Here, you can
access all quizzes created for the course. You have the option to rename or delete quizzes. Click
on a quiz to begin.

7 - Edux Course Syllabus

A syllabus for the course can be uploaded when creating a couse. There is a section for that in the
bottom lef tof the course creation modal. Weekly study plan will be created immediately after the
upload of syllabus.

Weekly study plan can be accessed through the course homepage. This section provides a study
plan for uploaded course syllabus.

If there is no existing syllabus uploaded or not uploaded in the creation of the course, user can add
the syllabus through Upload/Update Syllabus. Weekly study plan will be created immediately after
the upload of syllabus.

8 - Edux Skill Tree

Edux Skill Tree

The Edux Skill Tree is a dynamic and visual representation of your learning progress and mastery
over course topics. It evolves as you interact with the platform, especially through the AI-powered
chat and course features.

How It Works

1. Starts from Chat Interactions:
 When you begin chatting with the AI about course topics—asking questions, exploring concepts,
or uploading slides—the system captures what you're learning. These interactions are analyzed to
determine which skills or subtopics you’ve engaged with.

2. Skill Tree is Updated Automatically:
 Every time you enter the Skill Tree screen, it reflects the latest updates. This includes new skills
you've unlocked or expanded based on your recent chat conversations. So if you've recently
discussed a new unit or concept in the chat, your skill tree will show progress in that area the next
time you open it.

3. Course List Connection:
 The skill tree is also tied to your Course List screen. When you navigate to a specific course and
then view the skill tree, it shows your progression within that course's structure—what you’ve
learned, what’s in progress, and what’s left to explore.

4. Visual and Interactive:
 The tree is designed to be intuitive and engaging. Skills are displayed as nodes or branches, with
connections showing the prerequisites or dependencies between topics. You can click on each skill
to review what you've learned, revisit related chats, or dive deeper into the content.

5. Continuous Feedback Loop:
 Every time you use the chat, learn something new, or even edit an existing conversation, the
system re-evaluates and updates your skill progression. This ensures your skill tree always mirrors
your actual learning journey.

Course List & Skill Tree Entry
 Below the analytics, you see Your Courses—for example, Operating Systems (CS342) and
Senior Design Project (CS492). Clicking “View Course” takes you into that course’s dedicated
Skill Tree view. Here, the tree is pre-filtered to only that course’s topics. This linkage ensures that
whatever you’ve discussed in the chat about Operating Systems appears in its specific tree when
you enter it.

Dynamic Skill Tree Visualization
 In the Skill Progression Tree, each node represents a discrete topic or sub-skill (e.g., “Storage
Structure,” “Hardware Interrupts”). Lines between nodes show the prerequisite relationships: you
must master foundational nodes before unlocking the next ones. Every time you visit this screen,
the tree redraws itself to reflect any new chat-based learning—highlighting nodes you’ve unlocked
or made progress on since your last visit.

Completed Skill Pop-Up
 Clicking on a fully mastered node (like “Computer System Components”) opens a Completed
Skill dialog. It shows a green “Completed” badge and the quiz outcome used to verify mastery
(for instance, 2 questions passed at a 70% threshold). This popup confirms that your chat
discussions and quiz performance have been successfully merged into your Skill Tree progress.

Quiz Workflow for In-Progress Skills
 For nodes you’ve unlocked but not yet mastered—such as “Storage Structure”—clicking the
node opens an In Progress dialog. It lists the quiz details (number of questions and passing score)
and offers a Take Quiz button. Once you start, a Quiz Question Screen displays one question at a
time (e.g., “Which memory can the CPU access directly?”), shows a progress bar, and lets you

navigate between questions. Completing the quiz updates the node’s status and feeds back into the
Skill Tree visualization on your next visit.

Completed Skill Pop-Up
 Clicking a fully mastered node opens a “Quiz Results” dialog with a green checkmark and
“Congratulations!” message. It shows time taken (e.g. 0:03), score (100%), correct answers (2/2),
and a “Passed” status. This confirms the quiz has been recorded and the node marked complete.

Storage Structure Confirmation
 The “Storage Structure” node’s modal displays a green “Completed” badge and a “Quiz
Assessment” summary: 2 questions, 70% passing score, your score (100%), and a filled progress
bar. A timestamp notes when you passed. This links your quiz success directly to that course topic.

Failed Quiz Feedback
 If you score below the pass threshold, the “Quiz Results” dialog shows a red “Try Again” header,
your score (0%), correct answers (0/2), and a “Failed” status. A warning box advises reviewing
the material and retaking the quiz, with “Try Again” and “Close” options.

Installation Guide

For installation guide check the Edux project implementation in GitHub. The information can be
found in the website.

10. References

Below is a list of 20 references in IEEE format that you can include in your report’s
bibliography:

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin, “Attention Is All You Need,” in Proc. 31st Conf. Neural Inf. Process. Syst.
(NeurIPS), Long Beach, CA, USA, Dec. 2017, pp. 6000–6010.

[2] T. Brown et al., “Language Models Are Few-Shot Learners,” in Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 1877–1901.

[3] S. Mitra and M. B. Choudhury, “The Evolution of Personalized Learning Systems: A Survey
of Techniques and Technologies,” IEEE Trans. Learn. Technol., vol. 14, no. 1, pp. 24–36,
Jan.–Mar. 2021.

[4] R. Rus and D. Graesser, “Research on Question Generation in Educational Contexts,” Int. J.
Artif. Intell. Educ., vol. 28, no. 2, pp. 435–463, Jun. 2018.

[5] R. S. Baker and K. Yacef, “The State of Educational Data Mining in 2019: A Review and
Future Visions,” J. Educ. Data Min., vol. 11, no. 2, pp. 1–17, 2019.

[6] Docker Inc., “Docker Documentation,” 2024. [Online]. Available: https://docs.docker.com/
[Accessed: Apr. 17, 2025].

[7] Microsoft Azure, “Azure Blob Storage Documentation,” Microsoft, 2024. [Online].
Available: https://docs.microsoft.com/azure/storage/blobs/ [Accessed: Apr. 9, 2025].

[8] European Parliament and Council, “Regulation (EU) 2016/679 (General Data Protection
Regulation),” Off. J. Eur. Union, Apr. 27, 2016. [Online]. Available:
https://eur-lex.europa.eu/eli/reg/2016/679/oj [Accessed: Apr. 28, 2025].

[9] Microsoft Corporation, “TypeScript: JavaScript With Syntax For Types,” TypeScript, 2025.
[Online]. Available: https://www.typescriptlang.org/ [Accessed: Apr. 27, 2025].

[10] Tailwind Labs Inc., “Tailwind CSS: Rapidly Build Modern Websites Without Ever Leaving
Your HTML,” Tailwind CSS, 2025. [Online]. Available: https://tailwindcss.com/ [Accessed: Apr.
27, 2025].

[11] Vercel Inc., "Next.js: The React Framework for the Web," Next.js, 2025. [Online].
Available: https://nextjs.org/ [Accessed: Apr. 27, 2025].

[12] Radix UI, “Radix UI Documentation,” 2024. [Online]. Available: https://www.radix-ui.com/
[Accessed: Apr. 28, 2025].

[13] React Flow, “React Flow: A Library for Building Node-Based Applications,” 2024.
[Online]. Available: https://reactflow.dev/ [Accessed: Mar. 28, 2025].

[14] "react-card-flip," npm, [Online]. Available: https://www.npmjs.com/package/react-card-flip.
[Accessed: 28-Apr-2025].

[15] Recharts, “Recharts: Redefined Chart Library Built with React and D3,” 2024. [Online].
Available: https://recharts.org/ [Accessed: Apr. 14, 2025].

[16] M. Fowler and J. Lewis, “Microservices: a Definition of this New Architectural Term,”
ThoughtWorks, Mar. 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html [Accessed: Apr. 14, 2025].

[17] Tiangolo, “FastAPI: high performance, easy to learn, fast to code,” 2023. [Online].
Available: https://fastapi.tiangolo.com/ [Accessed: Apr. 6, 2025].

[18] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct. 2012. [Online].
Available: https://tools.ietf.org/html/rfc6749 [Accessed: Apr. 27, 2025].

https://docs.docker.com/
https://docs.microsoft.com/azure/storage/blobs/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.typescriptlang.org/
https://tailwindcss.com/
https://nextjs.org/
https://www.radix-ui.com/
https://reactflow.dev/
https://www.npmjs.com/package/react-card-flip
https://recharts.org/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://fastapi.tiangolo.com/
https://tools.ietf.org/html/rfc6749

[19] M. Bayer, “SQLAlchemy,” SQLAlchemy, 2025. [Online]. Available:
https://www.sqlalchemy.org/ [Accessed: Apr. 27, 2025].

[20] S. Pydantic Core Team, “Pydantic,” Pydantic, 2025. [Online]. Available:
https://docs.pydantic.dev/ [Accessed: Apr. 27, 2025].

[21] Atlassian, “Jira Software Documentation,” Atlassian Support, 2025. [Online]. Available:
https://confluence.atlassian.com/jira [Accessed: Apr. 28, 2025].

[22] GitHub, “GitHub Docs,” GitHub, 2025. [Online]. Available: https://docs.github.com/
[Accessed: Apr. 28, 2025].

[23] Slack Technologies, “Slack,” Slack, 2025. [Online]. Available: https://slack.com/ [Accessed:
Apr. 27, 2025].

[24] Microsoft Corporation, “Microsoft Teams,” Microsoft, 2025. [Online]. Available:
https://www.microsoft.com/microsoft-teams/ [Accessed: Apr. 27, 2025].

[25] Republic of Turkey, "Kişisel Verilerin Korunması Kanunu [Personal Data Protection Law],"
Resmî Gazete [Official Gazette], no. 29677, Apr. 7, 2016. [Online]. Available:
https://www.resmigazete.gov.tr/eskiler/2016/04/20160407-1.htm [Accessed: Apr. 27, 2025].

[26] OpenAI, "OpenAI API Documentation", OpenAI, 2025. [Online]. Available:
https://platform.openai.com/docs [Accessed: Apr. 27, 2025].

[27] Hugging Face, "Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow,
and JAX", Hugging Face, 2025. [Online]. Available:
https://huggingface.co/docs/transformers/index [Accessed: Apr. 27, 2025].

[28] Cloud Native Computing Foundation, “Kubernetes Documentation,” 2024. [Online].
Available: https://kubernetes.io/docs/home/ [Accessed: Apr. 12, 2025].

[29] P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,"
arXiv:2005.11401, May 2020. [Online]. Available: https://arxiv.org/abs/2005.11401 [Accessed:
Apr. 27, 2025].

https://www.sqlalchemy.org/
https://docs.pydantic.dev/
https://confluence.atlassian.com/jira
https://docs.github.com/
https://slack.com/
https://www.microsoft.com/microsoft-teams/
https://www.resmigazete.gov.tr/eskiler/2016/04/20160407-1.htm
https://platform.openai.com/docs
https://huggingface.co/docs/transformers/index
https://kubernetes.io/docs/home/
https://arxiv.org/abs/2005.11401

	
	Bilkent University
	Senior Design Project II – CS 492
	Final Report
	Bilginer Oral
	22103163
	bilginer.oral@ug.bilkent.edu.tr
	Cahit Ediz Civan
	22003206
	ediz.civan@ug.bilkent.edu.tr
	Efe Kaan Fidancı
	22102589
	kaan.fidanci@ug.bilkent.edu.tr
	Görkem Kadir Solun
	22003214
	kadir.solun@ug.bilkent.edu.tr
	Murat Çağrı Kara
	22102505
	cagri.kara@ug.bilkent.edu.tr
	
	1.​Introduction
	2.​Requirements Details
	2.1.​Functional Requirements
	2.1.1.​User Management and Authentication
	2.1.2.​Resource Upload and Processing
	2.1.3.​Interactive Learning Tools
	2.1.4.​Personalised Study Schedules
	2.1.5.​Learning Assistance with LLMs
	2.1.6.​Data Security and Privacy
	2.1.7.​Scalability and Performance

	2.2.​Non-Functional Requirements
	2.2.1.​Usability
	2.2.2.​Reliability
	2.2.3.​Performance
	2.2.4.​Supportability
	2.2.5.​Scalability

	3.​Final Architecture and Design Details
	3.1.​Architectural Overview
	3.2.​Layered Structure
	3.3.​Subsystem Decomposition and Services
	3.4.​Data Management and Security

	4.​Development/Implementation Details
	4.1.​Frontend
	4.2.​Backend
	4.3.​Deployment

	5.​Test Cases
	5.1.​Functionality Test Cases
	
	
	
	
	
	
	
	
	
	5.1.1.​Integration Test Cases

	
	
	
	
	
	
	
	
	5.2.​Non-Functional Test Cases
	5.2.1.​Performance
	
	5.2.2.​Security Test Cases
	5.2.3.​Usability Test Cases
	
	5.2.4.​Document Test Cases

	6.​Maintenance Plan and Details
	7.​Other Project Elements
	7.1.​Consideration of Various Factors in Engineering Design
	7.1.1.​Constraints
	7.1.2.​Standards

	7.2.​Ethics and Professional Responsibilities
	7.2.1.​Ethical Considerations
	Public Health and Safety
	Welfare and Security
	Global and Cultural Impact
	Social, Environmental, and Economic Responsibility
	7.2.2.​Professional Responsibilities
	Engineering Best Practices and Compliance
	Collaborative Teamwork and Ethical Leadership

	7.3.​Teamwork Details
	7.3.1.​Contributing and functioning effectively on the team to establish goals, plan tasks, and meet objectives
	7.3.2.​Helping creating a collaborative and inclusive environment
	7.3.3.​Taking lead role and sharing leadership on the team
	7.3.4.​Meeting objectives

	7.4.​New Knowledge Acquired and Applied

	8.​Conclusion and Future Work
	9.​Glossary
	Edux User Manual
	1 - Logging into Edux
	1.1 - Sign-up
	1.2 - Sign-in

	2 - Edux Homepage
	3 - Edux Course Dashboard
	4 - Edux Chat Window
	5 - Edux Course Quizzes
	6 - Edux Course Flashcards
	7 - Edux Course Syllabus
	8 - Edux Skill Tree
	
	Edux Skill Tree
	How It Works

	Installation Guide
	10.​References

